Температура наружного воздуха для расчета отопления


Расчетная температура наружного воздуха для отопления

В данном посте приведены основные положения и выдержки из действующих СНиП. Расчетная температура наружного воздуха для отопления – это и есть средняя температура холодной пятидневки, которая закладывается в расчет системы отопления частного дома. Это усредненная температура наиболее холодных пятидневок за восемь самых холодных зим из последних 50 лет. Такой подход позволяет, с одной стороны, быть готовыми к сильным морозам, которые случаются лишь раз в несколько лет, с другой — не вкладывать в проект излишних средств. В масштабах массовой застройки речь идет о весьма значительных суммах.

Расчетная температура наружного воздуха для отопления. Измерение температуры и относительной влажности наружного воздуха. Термогигрометр оконный ТГО-1

Знание основных климатических факторов и особенностей их влияния на эксплуатационные качества строительных материалов и конструкций позволят всем желающим спроектировать и построить дом своими силами, а также сделать его теплым, сухим и уютным. Все ограждающие конструкции дома предназначены для защиты помещения от атмосферных воздействий: холода, дождя, снега, ветра и пр., называются ограждающими. К ним относятся: наружные стены, окна, двери, крыша. Чтобы сделать дом теплым необходимо правильно выбрать материал, учитывая его теплозащитные свойства именно для ограждающих конструкций дома.

К физико-климатическим факторам района строительства относятся: температура и влажность, скорость и направление ветра, высота снежного покрова и количество выпадающих осадков, глубина промерзания грунта, количество солнечных и пасмурных дней в году. Какие же надо учитывать при строительстве теплого дома? Разумеется те, которые непосредственно влияют на изменение температуры и влажности конструкций здания и в той или иной мере определяют выбор материала и типа конструкций. Прежде всего, это расчетная температура наружного воздуха для отопления в районе строительства в холодный период года и величина градусо суток отопительного периода.

При определении теплозащитных качеств и выборе конструкций наружных ограждений принимают следующую расчетную температуру наружного воздуха: для легких ограждений – абсолютно минимальную температуру tа; для ограждений малой массивности – среднюю наиболее холодных суток tх.с; средней массивности – среднюю из средних температур наиболее холодных суток и наиболее холодной пятидневки; для массивных ограждений – среднюю наиболее холодной пятидневки tн. Для перекрытий над подвалами и подпольями принимают среднюю наиболее холодной пятидневки температуру tн, независимо от массивности ограждения.

Небольшое отступление от темы. Дорогие друзья, нижеприведенная ссылка приведет Вас на обучающий курс Зинаиды Лукьяновой Фотошоп с нуля в видеоформате 3.0. Курс содержит 82 урока, которые прекрасны по содержанию и понятны новичку. Здесь же приведены 5 бесплатных урока, просмотрев которые, я оформил заявку на полный курс и не жалею. Я рекомендую данный курс всем, кому не чуждо чувство прекрасного и кто хочет попробовать себя в удаленной работе по профессии Дизайнер. Приобретя данный курс, вы не будете вечерами ходить из угла в угол, вы не будете чесать пузо, лежа перед телевизором – вы будете работать, создавая прекрасное. И, как сказать, может это и станет вашим смыслом жизни. Я искренне желаю Вам удачи. Вот эта ссылка. Дерзайте!           https://o.cscore.ru/28gig49/disc149

Различия между расчетными температурами наружного воздуха необходимо знать, чтобы правильно выбрать теплозащиту ограждения. Ведь потери тепла конструкцией в течение суток происходят неравномерно. В ночное время, когда воздух наиболее холодный, температура наружной поверхности стены снижается максимально, и постепенно стена начинает охлаждаться по толщине. Быстрота охлаждения конструкции зависит от ее способности усваивать и отдавать теплоту или от тепловой инерции. В бревенчатом срубе или в здании с массивными стенами в самый морозный день человек не ощущает холода. Но в том же помещении, если оно плохо отапливается, через несколько дней становится холодно, промозгло и неуютно: низкие температуры наружного воздуха вызвали резкое уменьшение температуры внутренней поверхности ограждающей конструкции. Поэтому остывший дом с массивными стенами приходится протапливать иногда и несколько дней.

В связи с этим для ограждающих конструкций большой инерционности расчетная температура наружного воздуха для отопления принимается равной средней температуре наиболее холодной пятидневки. Период в 5 суток принят потому, что его длительность достаточна для того, чтобы низкая температура наружного воздуха, установившаяся в течение этого периода, вызвала максимальное уменьшение температуры на внутренней поверхности стены. Для охлаждения ограждения малой инерционности достаточно одних суток, поэтому для их теплотехнического расчета принимается средняя температура наружного воздуха наиболее холодных суток.

При проектировании системы отопления принимают такие расчетные температуры наружного воздуха: зимнюю, равную средней наиболее холодных пятидневок из восьми зим за 50-летний период tн и среднюю наиболее холодного периода (для вентиляции) tх.п. Расчетные параметры наружного воздуха для некоторых городов России (см. Таблицу 1).

РАСЧЕТНЫЕ ПАРАМЕТРЫ НАРУЖНОГО ВОЗДУХА ДЛЯ НЕКОТОРЫХ ГОРОДОВ РОССИИ (СНиП 2-А.6-72)

Таблица 1

Город

Средняя температура наружного воздуха, оС

n, сут

v, м/с

Зона влажности

t н t х.п t о.п
Архангельск -32 -19 -4,7 251 5,9 Влажная
Барабинск -37 -26 -9,6 228 6,5 Сухая
Барнаул -39 -23 -8,3 219 5,9 Сухая
Благовещенск -34 -25 -11,5 212 3,4 Нормальная
Верхоянск -60 -51 -22 272 2,1 Сухая
Владивосток -25 -16 -4,8 201 9 Влажная
Волгоград -22 -13 -3.4 182 Сухая
Екатеринбург -31 -20 -6,4 228 5 Сухая
Иркутск -38 -25 -8,9 241 2,8 Сухая
Калуга -26 -14 -3,5 214 5 Нормальная
Кемерово -39 -25 -8,8 232 6,8 Сухая
Красноярск – 40 -22 – 7,2 235 Сухая
Москва -25 -14 -3,2 205 4,9 Нормальная
Магадан -35 -23 -9,6 278 Нормальная
Новосибирск -39 -24 -9,1 227 5,7 Сухая
Омск -37 -23 -7,7 220 5,1 Сухая
Ростов -22 -8 -0,6 175 6,5 Сухая
С-Петербург -25 -11 -2,2 219 Влажная
Cахалин, г.Оха -29 -22 -7,5 266 11,2 Влажная
Томск -40 -25 -8,8 234 3,3 Нормальная
Тюмень – 35 -21 – 5,7 220 3,9 Сухая
Хабаровск -32 -23 -10,1 205 5,9 Влажная
Челябинск -29 -20 -7,1 216 4,5 Сухая
Чита -38 -30 -11,6 240 3,9 Сухая
Якутск -55 -45 -19,5 254 Сухая

Что касается расчетной температуры внутреннего воздуха в доме, то она принимается в зависимости от назначения помещения (см. Таблицу 2). При расчетной температуре воздуха ниже t н = -31оС для угловой и прочих жилых комнат берутся более высокие значения, +22 и +20С (источник — постановление Правительства РФ от 23.05.2006 «Правила предоставления коммунальных услуг гражданам»).

 РАСЧЕТНЫЕ ТЕМПЕРАТУРЫ ВНУТРЕННЕГО ВОЗДУХА В ПОМЕЩЕНИЯХ ЖИЛОГО ДОМА (СНиП 2-Л. 1-71)

Таблица 2

Наименование помещения Температура внутреннего воздуха в помещении, оС
Жилая комната: угловая/прочие комнаты

22/20

Кухня 18
Коридор 16
Уборная 16
Ванная 25
Кладовая 12
Топочная 14

t в – расчетная температура внутреннего воздуха отапливаемого помещения, оС.

ОПРЕДЕЛЕНИЕ ГРАДУСО СУТОК ОТОПИТЕЛЬНОГО ПЕРИОДА  ДЛЯ г.ТОМСКА

И еще, мы должны определить градусо сутки отопительного периода (ГСОП). Формула для вычисления данного параметра имеет вид:

ГСОП=( t в – t о.п ) * n

Для г.Томска градусо сутки отопительного периода  будут  равны: ГСОП=( 20- (-8,8) * 234 = 6739,2 оС*сут. Для чего он используется и каким образом рассчитывается? От величины ГСОП будет зависеть нормируемое приведенное сопротивление теплопередаче ограждающих конструкций нашего дома. Например, для Московской области, где параметр ГСОП равен 4000 оС*сут, сопротивление теплопередаче ограждающей конструкции должно быть не меньше: для стен – 2,8 м2 * оС /Вт, для перекрытий (пол 1-ого этажа, чердак или потолок мансарды) – 3,7 м2 * оС /Вт, для окон и дверей – 0,35 м2 * оС /Вт. В пункте №5 нашего плана по расчету отопления частного дома мы поговорим об этом поподробней. Приведенное сопротивление теплопередаче будет определено для всех ограждающих конструкций нашего дома.

Итак, расчетные параметры наружного и внутреннего воздуха для расчета отопления и вентиляции для нашего дома принимаем следующие:

t н = – 40оС – расчетная зимняя температура наружного воздуха для проектирования отопления;

t х.п = – 25 оС –  расчетная зимняя температура наружного воздуха для проектирования вентиляции;

t о.п = – 8,8 оС –  средняя температура отопительного периода;

n = 234 сут. –  продолжительность отопительного периода;

v = 3,3 м/с –  средняя скорость ветра за январь;

ГСОП= 6739,2 оС*сут.

Дорогие друзья, в следующем посте мы с вами произведем расчет тепловой нагрузки на отопление дома различными способами, сравним результаты и проанализируем их. Сегодня мы с вами выполнили 1-ый пункт нашего плана по расчету системы отопления  дома – определили расчетную температуру наружного воздуха для отопления, а также определили градусо сутки отопительного периода для г. Томска. Кто еще не успел присоединяйтесь! До связи.

С уважением, Григорий Володин

[wysija_form id=”12″]

barbotazh.ru

Расчетная температура наружного воздуха для проектирования отопления и температура теплоносителя

От чего зависит температура батарей отопления в городской квартире? Регламентируют ли ее ГОСТ или СНиП? Как температурный график отопительной системы связан с климатической зоной? Давайте попробуем ответить на эти вопросы.

Подчиняется ли каким-то закономерностям температура батарей? Давайте выясним.

Расчетная температура воздуха

Понятие температура отопительного периода имеет отношение не только к температурному графику. Им определяются требования к степени теплоизоляции здания, размерам и тепловому потоку от размещенных в жилых и прочих помещениях отопительных приборов, остеклению и качеству герметизации подъездов.

Так что же это за понятие? Это всего лишь усредненная температура наиболее холодных пятидневок за последние 50 лет, при которой работа системы отопления должна обеспечить комфортные условия внутри зданий.

Эти условия описаны в постановлении Правительства РФ от 23.05.2006 «Правила предоставления коммунальных услуг гражданам»:

  • В жилых комнатах, расположенных в середине дома, температура не должна быть ниже +18 С; в угловых — +20 С.

Нюанс: при расчетной температуре ниже -31 С эти значения повышаются до +20 и +22 градусов соответственно.

  • В санузле должно быть не менее +16 градусов, в ванной — +25.

Для общественных заведений рекомендации можно найти в СНиП 41-01-2003 и ведомственных нормах. Так, в классных помещениях должно быть не менее +21 С, а в продовольственных магазинах — +12 С; в больнице рекомендованная температура после отопластики равна +22, а при отклонениях в работе щитовидной железы — +15.

Дополнительные значения для некоторых типов помещений.

Вернемся, однако, немного назад. Откуда проектировщику взять расчетные температуры воздуха для того или иного города?

Вся необходимая информация содержится в СНиП 23-01-99 «Строительная климатология». Любопытно, что в изданном через 8 лет после распада Союза документе упоминаются все основные населенные пункты бывших союзных республик.

Город Расчетная температура
Барнаул -39
Благовещенск -34
Тында -42
Белгород -23
Воронеж -26
Братск -43
Калининград -19
Кемерово -39
Сочи -3
Игарка -49
Сусуман -55
Верхоянск -59
Баку -4
Ялта -7

Какой должна быть температура радиаторов отопления в квартире, позволяющая обеспечить описанные условия?

Ее определяет среднесуточная температура воздуха на улице.

Зависимость описывается двумя температурными графиками:

  • Для теплотрассы на выходе из ТЭЦ или котельной температура подающего и обратного трубопроводов находится в пределах 150/70 С.
  • Во внутридомовой системе температурный режим отопления должен укладываться в значения 95/70 градусов в двухтрубной системе (то есть почти во всех многоквартирных домах) и 105/70 в однотрубных системах отопления зданий.

Слева — вход с трассы. Справа — система отопления дома.

Обратите внимание:в дошкольных учреждениях максимальная температура воды в системе отопления не может превышать +37 С. Именно для компенсации этого невысокого значения радиаторы в группах обычно имеют весьма внушительные размеры.

Почему температура отопления в квартире столь сильно отличается от параметров трассы? Чтобы ответить на этот вопрос, надо вкратце разъяснить принцип работы элеваторного узла (теплового пункта дома).

Требования к системе отопления в некотором роде взаимоисключающи. С одной стороны, чем меньше разброс температур между подачей и обраткой — тем равномернее будут нагреты батареи в доме и тем выше окажется эффективность концевых отопительных приборов. Раз так — очевидно, что скорость циркуляции в системе должна быть достаточно высокой.

Однако перегрев обратки крайне нежелателен для ТЭЦ: из-за определенных технических ограничений воду перед ее запуском на новый цикл вначале приходится предварительно охлаждать до тех самых 70 С.

Устройство элеватора довольно остроумно обходит противоречие: часть воды из обратного трубопровода вовлекается в повторный цикл циркуляции. В результате при подаче на входных задвижках в 140 С в дом (непосредственно в радиаторы) идет всего 90-95 градусов.

Схема работы элеватора.

О современной системе отопления в многоквартирном доме полезно знать еще несколько вещей.

  • При температуре подачи на трассе до 90 градусов, система ГВС должна быть запитана с подающего трубопровода; при превышении этого значения — с обратного. Если переключения не произошло, в системе ГВС может оказаться столько же, сколько на прямой нитке теплотрассы. Какие последствия это будет иметь для гибких подводок и резиновых прокладок — догадаться нетрудно.
  • В критических ситуациях нормативы температур в самой системе отопления тоже могут быть превышены. Скажем, при массовых жалобах на холод в квартирах практикуется работа элеватора без сопла, с заглушенным подсосом.

Регулировка

Как выполняется регулировка температуры отопления в системах ЦО после входных задвижек?

Элеватор

Штатно температура отопления в системе может меняться только одним способом — изменением диаметра сопла. Все изменения должны быть согласованы с представителями организации — поставщика тепла (коммунальных тепловых сетей); решения о том, заварить сопло или рассверлить его, принимаются на основании замеров температуры и давления в элеваторном узле и в тепловых колодцах.

Демонтированные сопла.

Демонтаж сопла и изменение его размеров занимают не более получаса и требуют полной работоспособности запорной арматуры в узле. Собственно, достаточно перекрыть по кругу все задвижки (входные, ГВС, домовые) и разобрать все три фланца на элеваторе. Рассверленное или заваренное сопло монтируется в обратном порядке.

Совет: новые паронитовые прокладки для трубных фланцев оказываются на складах жилищных организаций, увы, нечасто. При демонтаже элеватора или замене задвижек своими руками поможет простая инструкция: прокладка вырезается из автомобильной камеры.

Стоит упомянуть еще пару способов, которыми может регулироваться температура отопления — воды в трубах и, соответственно, радиаторов.

  • Вместо обычного сопла с постоянным диаметром может использоваться регулируемый элеватор. Простая подстройка пропускной способности позволяет гибко настраивать температуру смеси и обратки.

Регулируемое сопло.

  • Кроме того, для уменьшения температуры обратного трубопровода можно уменьшить перепад давления на элеваторе. Это делается входной обратной задвижкой.

Как именно?

  • ГВС переключается на прямую нитку.
  • Замеряется давление на подающей нитке до элеватора. Затем манометр вкручивается в обратный трубопровод в любой его точке.
  • Входная обратная задвижка полностью закрывается и медленно приоткрывается, пока разница давлений между подающим и обратным трубопроводами не уменьшится на 0,2 кгс/см2 от исходной. При необходимости повторные замеры температур и дальнейшее уменьшение перепада по манометру повторяется через сутки с тем же шагом.

Регулируется запорная арматура 4 с контролем перепада по манометру 2.

Обратите внимание: если просто частично закрыть полностью открытую задвижку, ее щечки могут заклиниться штоком и опустится в рабочее положение позже. В результате обратка окажется полностью закрытой.

Цена остановки циркуляции в отопительный сезон — гарантированная разморозка подъездного отопления.

Квартира

Как регулируется температура воды в трубах отопления внутри отдельной квартиры?По понятным причинам ее можно только уменьшить дросселирующей запорной арматурой. Для этой цели на выходе каждого отопительного прибора ставится дроссель или термостатическая головка, регулирующая собственную проходимость в зависимости от температуры в комнате.

В крайнем случае,температура теплоносителя в системе отопления может регулироваться и шаровым вентилем; однако его чувствительность к положению рычага делает настройку довольно неудобной.

Термостатическая головка автоматически поддерживает постоянную температуру в комнате.

Что делать, если теплоотдача отопительного прибора недостаточна?

Вот меры, способные увеличить ее.

  • Простое добавление новых секций с дальнего от подводок конца поднимет тепловой поток от радиатора нелинейно, но довольно заметно. Почему нелинейно? Да потому, что конец батареи всегда будет холоднее ее подводок.
  • Перемычка между подводками, снабженная вентилем, способна при его закрытии увеличить поток теплоносителя через секции. Стало быть, прибор станет отдавать больше тепла. А вот полностью глушить перемычку не стоит: без нее регулировка температуры батарей отопления дросселями приведет к довольно неприятному общению с замерзающими соседями.
  • Подводки можно подключить к радиатору не только сборку, но и снизу. Тогда теплоноситель будет равномерно циркулировать через все секции, что тоже поднимет температуру в квартире.

На фото — нижнее подключение радиатора.

  • Наконец, не стоит забывать про промывку. Сброс воды через промывочный кран и шланг в канализацию удалят из батареи накопившиеся ил и песок, восстанавливая циркуляцию по всему объему.

Кстати: радиаторы с нижним подключением не нуждаются в промывке. Именно потому, что теплоноситель равномерно движется по всей длине нижнего коллектора.

Теплый пол

Как подключить к системе ЦО низкотемпературное отопление? Ведь для теплого пола температуры выше +45С категорически неприемлемы.

Способ, которым низкотемпературные системы отопления согласуются с ЦО, живо напоминает принцип работы элеваторного узла. Часть теплоносителя вовлекается в повторную циркуляцию, которая обеспечивается маломощным насосом. Регулировка температуры осуществляется двухпроходным клапаном с термоголовкой.

Схема простейшего узла смешения.

Заключение

Надеемся, что нам удалось удовлетворить любопытство читателя, познакомив его с некоторыми аспектами работы отопительных систем. Как всегда, прикрепленное видео предложит дополнительную информацию. Успехов!

загрузка...

gidroguru.com

Сантехнические работы Тюмень

Отопительный период и его показатели: градусо-сутки отопительного периода, наружная температура.

Отопительный период – период года, тогда устойчивая среднесуточная температура наружного воздуха меньше или равна + 8,0 °C.

Сантехнические работы Тюмень +7-932-2000-535 ООО Теплостандарт

Основные показатели отопительного периода, которые используются для расчетов систем отопления следующие :

– температура наружного воздуха в холодный период года, град.C(нормативное значение, указанное в СниП 2.04.05-91 “Отопление, вентиляция и кондиционирование”. См. Приложение 8, стр. 42, параметры Б);

– продолжительность отопительного периода, сутки;

– средняя температура отопительного периода, град.C.

– градусо-сутки отопительного периода, °C х сут – этот показатель рассчитывается по формуле:

ГСОП = (tвн – tот.пер.) * zот.пер.,

где, tвн – температура внутреннего воздуха в помещении, °C – для частного дома принимаем равной – 20,0 °C по ГОСТ 12.1.005-88 ;

tот.пер. – средняя температура отопительного периода, °C ;

zот.пер. – продолжительность отопительного периода, сут.

Последние два показателя принимаются по – СНиП 23-01-99 “Строительная климатология и геофизика”. См. Таблица #_1, столбцы 11 и 12/

Все эти показатели отличаются по городам. Их значения приводятся в указанных СНиПах. Для удобства пользования и поиска все необходимые данные приведены ниже в таблице.

Например, градусо-сутки отопительного периода в Москве – 49.0 – 43.0 °C*сут. [(20.0 °C – (- 3,1 °C))*214 сут.] ), градусо-сутки отопительного периода в Киеве – 36,0 – 26,0 °C *сут. [(20,0 °C – (- 0,6 °C))*126 сут.].

Таблица показателей отопительного периода по городам

ГородТемпература наружного воздуха в холодный период года, °CПродолжительность периода со средней суточной температурой воздуха не более + 8,0 °C, суткиСредняя температура периода со средней суточной температурой воздуха не более + 8,0 °C градусо-сутки отопительного периода при tвн = 20,0 °C
БЕЛАРУСЬ
Брест- 20,01860,13 701
Витебск- 26,0207- 2,14 575
Гомель194- 1,64 190
Гродно194- 0,53 977
Минск- 25,0202- 1,64 363
Могилев204- 1,94 468
Полоцк- 26,0207- 1,84 513
КАЗАХСТАН
Актюбинск- 31,0200- 6,85 360
Алматы- 25,0168- 1,63 629
Астана215- 8,16 042
Атырау177- 3,44 142
Балхаш189- 6,55 009
Джамбул- 26,0162- 0,73 353
Караганда- 32,0208- 7,05 616
Кзыл-Орда- 24,0175- 4,34 253
Кокчетав- 36,0215- 7,55 913
Кустанай- 35,0212- 8,15 957
Павлодар- 37,0206- 8,75 912
Петропавловск- 36,0218- 8,66 235
Семипалатинск- 38,0203- 7,85 643
Талды-Курган- 30,0174- 3,74 124
Тургай- 32,0194- 7,85 393
Уральск- 31,0198- 5,95 128
Усть-Каменогорск- 39,0204- 7,85 671
Форт-Шевченко- 15,01570,92 999
Чимкент1431,52 646
МОЛДАВИЯ
Кишинев- 16,01620,63 143
РОССИЯ
Абакан- 40,0225- 9,76 683
Анадырь311- 10,59 486
Архангельск- 31,0253- 4,46 173
Астрахань- 23,0167- 1,23 540
Барнаул- 39,0221- 7,76 122
Белгород191- 1,94 183
Благовещенск- 34,0218- 10,66 671
Брянск- 28,0205- 2,34 572
Владивосток- 24,0196- 3,94 684
Владикавказ8,01740,43 410
Владимир- 28,0213- 3,55 006
Волгоград- 25,0178- 2,23 952
Вологда- 31,0231- 4,15 567
Воронеж- 26,0196- 3,14 528
Вятка231- 5,45 867
Грозный- 18,01600,93 056
Екатеринбург- 35,0230- 6,05 980
Ижевск222- 5,65 683
Иркутск- 37,0240- 8,56 840
Казань- 32,0215- 5,25 418
Калининград- 18,01931,13 648
Калуга- 27,0210- 2,94 809
Кемерово- 39,0231- 8,36 537
Кострома- 31,0222- 3,95 306
Краснодар- 19,01492,02 682
Красноярск- 40,0234- 7,16 341
Курган- 37,0216- 7,75 983
Курск- 26,0198- 2,44 435
Липецк- 27,0202- 3,44 727
Магадан288- 7,17 805
Майкоп1482,32 620
Махачкала- 4,01482,72 560
Москва- 26,0214- 3,14 943
Мурманск- 27,0275- 3,26 380
Нальчик1680,63 259
Нарьян-Мар- 37,0290- 7,27 888
Нижний Новгород- 30,0215- 4,15 182
Новгород- 27,0221- 2,34 928
Новосибирск- 39,0230- 8,76 601
Омск- 37,0221- 8,46 276
Оренбург- 31,0202- 6,35 313
Орел- 26,0205- 2,74 654
Пенза- 29,0207- 4,55 072
Пермь- 35,0229- 5,95 931
Петрозаводск- 29,0240- 3,15 544
Петропавловск-Камчатский- 20,02591,64 766
Псков- 28,0212- 1,64 579
Ростов-на-Дону- 22,0171- 0,63 523
Рязань- 27,0208- 3,54 888
Самара- 30,0203- 5,25 116
Санкт-Петербург- 26,0220- 1,84 796
Саратов- 27,0196- 4,34 763
Смоленск- 26,0215- 2,44 816
Ставрополь1680,93 209
Сыктывкар- 36,0245- 5,86 321
Тамбов- 28,0201- 3,74 764
Томск- 40,0236- 8,46 702
Тула- 27,0207- 3,04 761
Тюмень- 37,0225- 7,26 120
Улан-Удэ- 37,0237- 10,47 205
Ульяновск- 31,0212- 5,45 385
Уфа- 35,0213- 5,95 517
Хабаровск- 31,0221- 9,36 475
Чебоксары- 32,0217- 4,95 403
Челябинск- 34,0218- 6,55 777
Черкесск1690,63 279
Чита- 38,0242- 11,47 599
Элиста173- 1,23 668
Южно-Сахалинск230- 4,35 589
Якутск- 55,0256- 20,610 394
Ярославль- 31,0221- 4,05304
УКРАИНА
Винница- 21,0180- 0,73726
Днепропетровск- 23,0172- 0,63543
Донецк176- 0,93678
Житомир182- 0,83786
Запорожье- 22,01660,33270
Ивано-Франковск178-3560
Киев- 22,0176- 0,63626
Кировоград- 22,0175- 0,73623
Луганск- 25,0172- 0,83578
Луцк179- 0,13598
Львов- 19,017903580
Николаев- 20,01600,93056
Одесса- 18,01581,72891
Полтава- 23,0177- 1,33770
Ровно- 21,0181- 0,53711
Симферополь- 16,01532,62662
Сумы185- 1,94052
Тернополь- 21,0183- 0,73788
Ужгород- 18,01541,52849
Умань- 22,0178-363667
Харьков- 23,0179- 1,53849
Херсон- 19,01631,03097
Хмельницкий181- 0,53711
Чернигов- 23,0185- 1,43959
Черновцы173-3460

proekt-tmn.ru

Расчёт толщины теплоизоляции

В любом строительстве сразу возникает вопрос: «Какой толщины должна быть теплоизоляция стены, кровли?».

Толщина утепления, или если быть точнее термическое сопротивление, рассчитывается согласно СП 50.13330.2012.

В конце статьи вы можете скачать программу в Excel для расчёта толщины теплоизоляции и в этом же файле есть все необходимые таблицы.

Исходные данные для расчета толщины теплоизоляции

Для расчёта необходимой толщины теплоизоляции необходимы следующие данные:

1) Расчётная температура внутреннего воздуха;

2) Продолжительность и средняя температура отопительного периода;

3) Наименование ограждающих материалов (или как называют «пирог») и их параметры теплопроводности;

Расчётная температура внутреннего воздуха

Для жилых и общественных зданий назначается согласно ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях:

Таблица 1 (ГОСТ 30494-2011) — Оптимальные и допустимые нормы температуры и относительной влажности воздуха в обслуживаемой зоне помещений жилых зданий и общежитий

Период года Наименование помещения Температура воздуха, °С Относительная влажность, %
оптимальная допустимая оптимальная допустимая, не более
Холодный Жилая комната 20-22 18-24 (20-24) 45-30 60
Жилая комната в районах с температурой наиболее холодной пятидневки (обеспеченностью 0,92) минус 31 °С и ниже 21-23 20-24 (22-24) 45-30 60
Кухня 19-21 18-26 Не нормируется Не нормируется
Туалет 19-21 18-26 Не нормируется Не нормируется
Ванная, совмещенный санузел 24-26 18-26 Не нормируется Не нормируется
Помещения для отдыха и учебных занятий 20-22 18-24 45-30 60
Межквартирный коридор 18-20 16-22 45-30 60
Вестибюль, лестничная клетка 16-18 14-20 Не нормируется Не нормируется
Кладовые 16-18 12-22 Не нормируется Не нормируется
Теплый Жилая комната 22-25 20-28 60-30 65
Примечание — Значения в скобках относятся к домам для престарелых и инвалидов.

Таблица 2 (ГОСТ 30494-2011) — Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в обслуживаемой зоне детских дошкольных учреждений

Период года Наименование помещения Температура воздуха, °С Относительная влажность, %
оптимальная допустимая оптимальная допустимая, не более
Холодный Групповая раздевальная и туалет:
для ясельных и младших групп 21-23 20-24 45-30 60
для средних и дошкольных групп 19-21 18-25 45-30 60
Спальня:
для ясельных и младших групп 20-22 19-23 45-30 60
для средних и дошкольных групп 19-21 18-23 45-30 60
Вестибюль, лестничная клетка 18-20 16-22 Не нормируется Не нормируется
Теплый Групповые спальни 23-25 18-28 60-30 65

Примечания

1 В помещениях кухни, ванной и кладовой параметры воздуха следует принимать по таблице 1.

2 Для детских дошкольных учреждений, расположенных в районах с температурой наиболее холодной пятидневки (обеспеченностью 0,92) минус 31 °С и ниже, допустимую расчетную температуру воздуха в помещении следует принимать на 1 °С выше указанной в таблице 2.

Таблица 3 (ГОСТ 30494-2011) — Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в обслуживаемой зоне общественных и административных зданий

Период года Наименование помещения или категория Температура воздуха, °С Относительная влажность, %
оптимальная допустимая оптимальная допустимая, не более
Холодный 1 20-22 18-24 45-30 60
2 19-21 18-23 45-30 60
20-21 19-23 45-30 60
14-16 12-17 45-30 60
18-20 16-22 45-30 60
4 17-19 15-21 45-30 60
5 20-22 20-24 45-30 60
6 16-18 14-20 Не нормируется Не нормируется
Ванные,душевые 24-26 18-28 Не нормируется Не нормируется
Теплый Помещения с постоянным пребыванием людей 23-25 18-28 60-30 65

Для рабочих помещений внутренняя температура регламентируется ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны:

Таблица 1 (ГОСТ 12.1.005-88) Оптимальные и допустимые нормы температуры, относительной влажности и скорости движения воздуха в рабочей зоне производственных помещений

Период года Категория работ Температура, °С Относительная влажность, %
оптимальная допустимая оптимальная допустимая на рабочих

местах

верхняя граница нижняя граница
на рабочих местах
постоянных непостоянных постоянных непостоянных
Холодный Легкая — Iа 22 — 24 25 26 21 18 40 — 60 75
Легкая — Iб 21 — 23 24 25 20 17 40 — 60 75
Средней тяжести — IIа 18 — 20 23 24 17 15 40 — 60 75
Средней тяжести — IIб 17 — 19 21 23 15 13 40 — 60 75
Тяжелая — III 16 — 18 19 20 13 12 40 — 60 75
Теплый Легкая — Iа 23 — 25 28 30 22 20 40 — 60 55 (при 28 °С)
Легкая — Iб 22 — 24 28 30 21 19 40 — 60 60 (при 27 °С)
Средней тяжести — IIа 21 — 23 27 29 18 17 40 — 60 65 (при 26 °С)
Средней тяжести — IIб 20 — 22 27 29 16 15 40 — 60 70 (при 25 °С)
Тяжелая — III 18 — 20 26 28 15 13 40 — 60 75 (при 24 °С и ниже)

Дублируют эти данные ГОСТ-ов таблицы в СанПиН 2.1.2.2645-10 Санитарно-эпидемиологические требования к условиям проживания в жилых зданиях и помещениях и СанПиН 2.2.4.548-96 Гигиенические требования к микроклимату производственных помещений.

Расчётная температура принимается по минимальному значению из данных таблиц.

Условия эксплуатации конструкции

В зависимости от режима эксплуатации внутренних помещений и окружающей среды, условия эксплуатации разделяют на 2-е группы (А и Б).

Влажностной режим помещений определяется согласно Таблице 1 СП 50.13330.2012 Тепловая защита зданий

Таблица 1 (СП 50.13330.2012) — Влажностный режим помещений зданий

Режим Влажность внутреннего воздуха, %, при температуре, °С
до 12 свыше 12 до 24 свыше 24
Сухой До 60 До 50 До 40
Нормальный Свыше 60 до 75 Свыше 50 до 60 Свыше 40 до 50
Влажный Свыше 75 Свыше 60 до 75 Свыше 50 до 60
Мокрый Свыше 75 Свыше 60

Температуру и влажность внутреннего воздуха можно узнать по таблицам ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях и ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны (таблицы приведены в статье выше).

Зоны влажности территории России следует принимать по Карте зон влажности приложения В СП 50.13330.2012 Тепловая защита зданий.

Рисунок 1. Карта зон влажности

На основании этих данных по таблице 2 СП 50.13330.2012 назначаются условия эксплуатации ограждающих конструкций.

Таблица 2 (СП 50.13330.2012) — Условия эксплуатации ограждающих конструкций

Влажностный режим

помещений зданий

(по таблице 1 СП 50.13330.2012)

Условия эксплуатации А и Б в зоне влажности (по приложению В)
сухой нормальной влажной
Сухой А А Б
Нормальный А Б Б
Влажный или мокрый Б Б Б

Данный показатель необходим при выборе коэффициента теплопроводности и непосредственно влияет на толщину утепления т.к. впитывая в себя влагу утеплитель теряет свои теплоизолирующие свойства.

Продолжительность и средняя температура отопительного периода

Параметры наружного воздуха можно узнать в СП 131.13330.2012 Строительная климатология, Актуализированная редакция СНиП 23-01-99*.

Средняя температура наружного воздуха, а также продолжительность отопительного периода принимаются согласно таблице 3.1 СП 131.13330.2012 для периода со среднесуточной температурой наружного воздуха не более 8 °С, а при проектировании лечебно-профилактических, детских учреждений и домов-интернатов для престарелых не более 10 °С;

Например для г. Уфа продолжительность отопительного периода со среднесуточной температурой воздуха ниже 8 °С — 209 дней, при этом средняя температура отопительного периода минус 6 °С. Для лечебно-профилактических, детских учреждений и домов-интернатов для престарелых нужно смотреть данные для среднесуточной температурой воздуха ниже 10 °С (224 дней, минус 5°С соответственно).

Если данного поселка нет в списке, то либо принимают ближайший пункт, который имеется в списке, либо пользуются данными метеорологических наблюдений.

Наименование ограждающих конструкций

Прежде всего необходимо определится из каких материалов будет ограждающая стена. На этапе проектирования некоторые параметры мы задаём сразу, например толщина кладки определяется расчётом на прочность, назначается марка кирпича, назначается материал основного утеплителя, а его толщина вычисляется методом подбора. Любой материал имеет теплопроводность. Теплопроводность — это процесс переноса тепла от более нагретых частей тела к менее нагретым. Теплопроводность измеряется в Вт/(м•°С). Для ограждающих конструкций чем этот показатель ниже, тем лучше.

Термическое сопротивление — это способность тела препятствовать распространению тепла. Термическое сопротивление и теплопроводность находятся в обратно-пропорциональной зависимости и чем этот показатель выше, тем «теплее» стена. Термическое сопротивление измеряется в (м²•°С)/Вт.

Для расчётов нам необходимо знать все компоненты конструкции стены или кровли, их толщины, параметры теплопроводности компонентов. Структуру стены или кровли обычно называют «пирогом», т.е. кровельный пирог — это послойное описание компонентов кровли.

Тонкие слои, которые особо не влияют на теплопроводность конструкции, но необходимы для других целей, например пароизоляция, можно не учитывать при расчёте термического сопротивления конструкции.

Расчёт толщины теплоизоляции

Прежде всего необходимо определить ГСОП (градусо-сутки отопительного периода, °С ∙ сут/год). Данный параметр определяем по формуле 5.2 СП 50.13330.2012 Тепловая защита зданий:

ГСОП = (tв — tот)zот, 

где tв — расчётная внутренняя температура воздуха, принимаемая по минимальным температурам согласно ГОСТ 30494-2011, ГОСТ 12.1.005-88 (см. выше);

tот, zот — средняя температура наружного воздуха, °С, и продолжительность, сут/год, отопительного периода, принимаемые по своду правил для периода со среднесуточной температурой наружного воздуха не более 8 °С, а при проектировании лечебно-профилактических, детских учреждений и домов-интернатов для престарелых не более 10 °С (принимается согласно СП 131.13330.2012 Строительная климатология).

Далее по таблице 3 СП 50.13330.2012 Тепловая защита зданий определяем требуемое термическое сопротивление ограждающей конструкции.

Таблица 3 (СП 50.13330.2012) — Базовые значения требуемого сопротивления теплопередаче ограждающих конструкций

Здания и помещения, коэффициенты а и b Градусо-сутки отопительного периода, °С сут/год Базовые значения требуемого сопротивления теплопередаче  (м2 ∙ °С)/Вт, ограждающих конструкций
Стен Покрытий и перекрытий над проездами Перекрытий чердачных над неотапливаемыми подпольями и подвалами Окон и балконных дверей, витрин и витражей Фонарей
1 2 3 4 5 6 7
1 Жилые, лечебно-профилактические и детские учреждения, школы, интернаты, гостиницы и общежития 2000 2,1 3,2 2,8 0,3 0,3
4000 2,8 4,2 3,7 0,45 0,35
6000 3,5 5,2 4,6 0,6 0,4
8000 4,2 6,2 5,5 0,7 0,45
10000 4,9 7,2 6,4 0,75 0,5
12000 5,6 8,2 7,3 0,8 0,55
a 0,00035 0,0005 0,00045 0,000025
b 1,4 2,2 1,9 0,25
2 Общественные, кроме указанных выше, административные и бытовые, производственные и другие здания и помещения с влажным или мокрым режимом 2000 1,8 2,4 2,0 0,3 0,3
4000 2,4 3,2 2,7 0,4 0,35
6000 3,0 4,0 3,4 0,5 0,4
8000 3,6 4,8 4,1 0,6 0,45
10000 4,2 5,6 4,8 0,7 0,5
12000 4,8 6,4 5,5 0,8 0,55
a 0,0003 0,0004 0,00035 0,00005 0,000025
b 1,2 1,6 1,3 0,2 0,25
3 Производственные с сухим и нормальным режимами* 2000 1,4 2,0 1,4 0,25 0,2
4000 1,8 2,5 1,8 0,3 0,25
6000 2,2 3,0 2,2 0,35 0,3
8000 2,6 3,5 2,6 0,4 0,35
10000 3,0 4,0 3,0 0,45 0,4
12000 3,4 4,5 3,4 0,5 0,45
а 0,0002 0,00025 0,0002 0,000025 0,000025
b 1,0 1,5 1,0 0,2 0,15

Примечания

1 Значения  для величин ГСОП, отличающихся от табличных, следует определять по формуле

где ГСОП — градусо-сутки отопительного периода, °С сут/год, для конкретного пункта;

a, b — коэффициенты, значения которых следует принимать по данным таблицы для соответствующих групп зданий, за исключением графы 6, для группы зданий в поз. 1, где для интервала до 6000 °С ∙ сут/год: а = 0,000075, b = 0,15; для интервала 6000 — 8000 °С ∙ сут/год: а = 0,00005, b = 0,3; для интервала 8000 °С ∙ сут/год и более: а = 0,000025; b = 0,5.

2 Нормируемое значение приведенного сопротивления теплопередаче глухой части балконных дверей должно быть не менее чем в 1,5 раза выше нормируемого значения приведенного сопротивления теплопередаче светопрозрачной части этих конструкций.

3* Для зданий с избытками явной теплоты более 23 Вт/м3, нормируемые значения приведенного сопротивления теплопередаче, должны определяться для каждого конкретного здания.

Термическое сопротивление участка стены можем определить по формуле Е.6 СП 50.13330.2012:

где αв — коэффициент теплоотдачи внутренней поверхности ограждающей конструкции, Вт/(м2 ∙ °С), принимаемый согласно таблице 4 СП 50.13330.2012;

Таблица 4 (СП 50.13330.2012) — Коэффициенты теплоотдачи внутренней поверхности ограждающей конструкции

Внутренняя поверхность ограждения Коэффициент теплоотдачи αв, Вт/(м2 ∙ °С)
1 Стен, полов, гладких потолков, потолков с выступающими ребрами при отношении высоты h ребер к расстоянию а, между гранями соседних ребер h/a ≤ 0,3 8,7
2 Потолков с выступающими ребрами при отношении h/a > 0,3 7,6
3 Окон 8,0
4 Зенитных фонарей 9,9
Примечание — Коэффициент теплоотдачи αв внутренней поверхности ограждающих конструкций животноводческих и птицеводческих зданий следует принимать в соответствии с СП 106.13330.

αн — коэффициент теплоотдачи наружной поверхности ограждающей конструкции, Вт/(м2 ∙ °С), принимаемый согласно таблице 6 СП 50.13330.2012;

Таблица 6 (СП 50.13330.2012) — Коэффициенты теплоотдачи наружной поверхности ограждающей конструкции

Наружная поверхность ограждающих конструкций Коэффициент теплоотдачи для зимних условий, αн, Вт/(м2 ∙ °С)
1 Наружных стен, покрытий, перекрытий над проездами и над холодными (без ограждающих стенок) подпольями в Северной строительно-климатической зоне 23
2 Перекрытий над холодными подвалами, сообщающимися с наружным воздухом, перекрытий над холодными (с ограждающими стенками) подпольями и холодными этажами в Северной строительно-климатической зоне 17
3 Перекрытий чердачных и над неотапливаемыми подвалами со световыми проемами в стенах, а также наружных стен с воздушной прослойкой, вентилируемой наружным воздухом 12
4 Перекрытий над неотапливаемыми подвалами и техническими, подпольями, не вентилируемых наружным воздухом 6

Rs — термическое сопротивление слоя однородной части фрагмента, (м2 ∙ °С)/Вт, определяемое для невентилируемых воздушных прослоек по таблице Е.1 СП 50.13330.2012, для материальных слоев по формуле Е.7 СП 50.13330.2012

δs — толщина слоя, м;

λs — теплопроводность материала слоя, Вт/(м ∙ °С), принимаемая по результатам испытаний в аккредитованной лаборатории; при отсутствии таких данных оно оценивается по приложению С СП 50.13330.2012.

Таблица Е.1 (СП 50.13330.2012)

Толщина воздушной прослойки, м Термическое сопротивление замкнутой воздушной прослойки, м2 ∙ °С/Вт
горизонтальной при потоке тепла снизу вверх и вертикальной горизонтальной при потоке тепла сверху вниз
при температуре воздуха в прослойке
положительной отрицательной положительной отрицательной
0,01 0,13 0,15 0,14 0,15
0,02 0,14 0,15 0,15 0,19
0,03 0,14 0,16 0,16 0,21
0,05 0,14 0,17 0,17 0,22
0,1 0,15 0,18 0,18 0,23
0,15 0,15 0,18 0,19 0,24
0,2 — 0,3 0,15 0,19 0,19 0,24
Примечание — При оклейке одной или обеих поверхностей воздушной прослойки алюминиевой фольгой термическое сопротивление следует увеличивать в два раза.

Увеличивая толщину утеплителя мы увеличиваем термическое сопротивление Rs, и методом подбора добиваемся, чтобы  R0 был больше чем требуемое термическое сопротивление.

Зачем нужна такая толщина утеплителя?

Если попробовать рассчитать обычный дом из кирпича (толщина стены в 2 кирпича, 510 мм) или дом из бруса, то мы увидим, что для многих регионов такие дома не подходят по теплотехническому расчёту, однако в таких домах жить вполне комфортно, на стенах нет конденсата и многие считают что они «теплые». Однако толщина теплоизоляции подбирается сейчас по экономическим соображениям, а не техническим свойствам. Т.е. разницу в термическом сопротивлении стены вы почувствуете кошельком, а не микроклиматом помещения. Дом, утепленный согласно нормам будет расходовать меньше ресурсов на отопление и впоследствии такие вложения окупятся экономией денег при эксплуатации.

Более того, если вы строите частный дом для себя и рассчитываете его долго эксплуатировать, то можно взять толщину утеплителя больше расчётной, что впоследствии окупится.

В Европе есть стандарт «пассивных домов» или энергоэффективных домов. Термическое сопротивление таких стен раза в 2 выше чем требуют наши нормы, при том, что климат в Европе теплее.

В России тоже есть нормы энергоэффективности домов (см. таблицу 15 СП 50.13330.2012). Если проектировать утепление в точности согласно нормам, то мы получим здание класса энергоэффективности С. Увеличивая толщину утеплителя и применяя другие разработки в сфере энергоэффективности (современные окна и двери, рекуперация тепла), мы можем повысить класс энергоэффективности здания.

Примеры расчёта

1) Пример расчёта толщины утепления стены.

Литература:

1) СП 50.13330.2012 Тепловая защита зданий. Актуализированная редакция СНиП 23-02-2003 (скачать в pdf);

2) СП 131.13330.2012 Строительная климатология. Актуализированная редакция СНиП 23-01-99*(скачать в pdf);

3) ГОСТ 30494-2011 Здания жилые и общественные. Параметры микроклимата в помещениях;

4) ГОСТ 12.1.005-88 Система стандартов безопасности труда. Общие санитарно-гигиенические требования к воздуху рабочей зоны.

Для простоты расчёта я сделал не большую программку в Excel. 

В ней вы найдете также справочную информацию: расчётные коэффициенты и температуры, карта зон влажности.

buildingbook.ru


Смотрите также