Расчет тепловой мощности системы отопления


2.3 Расчет тепловой мощности системы отопления.

Уравнение теплового баланса здания

Для компенсации теплопотерь через наружные ограждения здания устраивают системы отопления.

Расчетные теплопотери помещений жилого здания вычисляют по уравнению теплового баланса:

, (2.7)

= +(2.8)

= +(2.9)

где - суммарные добавочные потери теплоты через ограждающие конструкции здания, Вт, [5];

- добавочные потери теплоты на инфильтрацию Вт, [5];

- бытовые тепловыделения, Вт, [5];

- основные потери теплоты через ограждающие конструкции здания, Вт, [5];

- дополнительные потери теплоты через ограждающие конструкции на ориен­та­цию по сторонам све­та, Вт;

- дополнительные потери теплоты на открывание наружных дверей лестничной клетки, Вт.

Методика расчета величин, входящих в формулы (2.6 - 2.8), приводится в разделах 2.3.1 – 2.3.6.

2.3.1 Основные потери теплоты через ограждающие конструкции здания

Основные потери теплоты , Вт, через рассматриваемые ограждающие конструкции (стены, окна, двери, потолки, полы над подвалами и подпольями) зависят от разности температуры наружного и внутреннего воздуха и рассчитываются с точностью до 10 Вт по формуле:

, (2.10)

где k - коэффициент теплопередачи ограждения, Вт/(м2 °С);

А - расчетная площадь поверхности ограждающей конструкции, м2;

tint - расчетная температура воздуха помещения, °С, (таблица 2.1);

text - расчетная температура наружного воздуха, °С принимаемая по параметрам Б (приложение А);

n – коэффициент, зависящий от положения наружной поверхности, по отношению к наружному воздуху (таблица 2.6).

Вычисление теплопотерь производят для каждого помещения здания.

Теплопотери через внутренние ограждения между смежными помещениями следует учитывать при разности воздуха tв этих помещений более 3°С.

Существуют помещения, в которых отопительные приборы не устанавливаются (коридор, санитарные узлы), но теплопотери в них через пол (первый этаж) или потолок (в данном случае – третий этаж) имеются. В этих случаях теплопотери данных помещений (или часть их) добавляются к теплопотерям ближайших помещений, имеющих отопительные приборы.

Расчетная площадь ограждающих конструкций А определяется по правилам обмера в соответствии с [7]. При этом, необходимо предварительно вычертить планы здания в масштабе 1:100. Толщина наружных ограждений должна быть вычерчена в масштабе, в соответствии с данными теплотехнического расчета.

По общим правилам обмера значения размеров принимаются:

  1. площадь окон и дверей - по наименьшим размерампроемов в свету;

  2. площадь потолков и полов - по расстоянию между осями внутренних стен и расстоянию от внутренней поверхности наружных стен до осей внутренних стен;

  3. высота стен первого этажа - по расстоянию от уровня чистого пола первого этажа до уровня чистого пола второго этажа;

  1. высота стен промежуточного этажа - по расстоянию между уровнями чистого пола данного и вышележащего этажей;

  2. высота стен верхнего этажа - по расстоянию от уровня чистого пола до верха утеплителя чердачного перекрытия;

6) ширина наружных стен:

- для неугловых помещений - по расстоянию между осями внутренних стен;

- для угловых помещений - по расстоянию от внешних поверхностей наружных стен до осей внутренних стен.

Линейные размеры ограждающих конструкций необходимо определять с точностью 0,1 м, а площадь - с точностью 0,1 м2.

Для лестничных клеток при расчете теплопотерь площадь наружной стены измеряют по высоте от поверхности пола 1 этажа до верха конструкции чердачного перекрытия. Учитывают теплопотери через наружные стены, наружную дверь, оконные проемы, чердачное перекрытие, перекрытие над подвалом.

Для данного курсовогопроекта толщины ограждающих конструкций жилого трехэтажного дома принимаются следующие:

- толщина наружной стены – 300 мм;

- толщина чердачного перекрытия – 200 мм;

- толщина перекрытия над подвалом – 300 мм.

Размеры оконного проема в свету – 1,8х1,5 м.

Размеры остекления балконной двери – 1,5х0,7 м.

Размеры балконной двери – 2,75х0,87 м.

Подвал - без окон.

Теплопотери подсчитываются для наружных стен (НС), перекрытий над подвалом (Пл), окон (ДО), балконных дверей (БД), наружной двери (ДН) и чердачных перекрытий (Пт).

Расчет основных теплопотерь для каждого помещения трех этажей здания записываем по форме таблицы 2.9.

1. Вычерчиваем планы этажей здания с указанием всех размеров. На планах здания все помещения номеруем поэтажно, по ходу часовой стрелки, начиная с помещения, расположенного в верхнем левом углу плана здания. Первая цифра соответствует номеру этажа, две последующие - номеру помещения. Например, для третьего этажа - 301, 302, 303 и т.д.

Данные заносим в таблицу 2.9 (графа 1).

2. В графе 2 записываем температуру внутреннего воздуха: в жилой комнате tint=20°С (в угловой комнате tint=22°С); на лестничной клетке tint=16°С; на кухне tint=18°С.

3. В графе 3 указываем условное обозначение ограждения: НС - наружная стена; ДО - окно с двойным остеклением; БД - балконная дверь; Пт - потолок; Пл - пол; ДН - дверь наружная, Л.кл. - лестничная клетка.

4. В графе 4 отмечаем ориентацию каждого вертикального наружного ограждения помещения (НС, ДО, ДН, БД) по сторонам света в зависимости от ориентации фасада здания (приложение А). В рассматриваемом примере ориентация фасада на Север – С.

5. В графе 5 с учетом правил обмера указываем размеры (ахb), м, наружных ограждений с точностью до 0,1 м. Например, в помещении 101 размеры наружной стены, ориентированной на С, составляют 4,5х3,3; размеры окна, ориентированного на С - 1,8х1,5 и т.д.

6. В графе 6 указываем площади наружных ограждений, А, м2, с точностью до 0,1 м2.

7. В графе 7 записываем расчетную температуру наружного воздуха, равную расчетной температуре холодной пятидневки text=tхп(0,92), °С (приложение А).

8. В графе 8 проставляем расчетную разность температур внутреннего и наружного воздуха.

9. В графе 9 записываем коэффициенты теплопередачи наружных ограждений, k: наружной стены, чердачного перекрытия, перекрытия над подвалом, наружных дверей, оконных проемов.

10. В графе 10 таблицы 2.9 проставляем коэффициент, учитывающий положение наружного ограждения по отношению к наружному воздуху, n.

11. Результаты расчетов основных теплопотерь для каждого помещения записываются в графу 11.

12.Добавочные потери теплоты через ограждающие конструкции на ориен­та­цию по сторонам све­та учитываются толь­ко для наружных стен, окон, наружных дверей [7]:

, Вт, (2.11)

где βор – поправочный коэффициент, учитывающий дополнительные теплопотери (ориентация, высота помещений, две и более ограждающих конструкции и т.д.).

следует принимать в долях от основных потерь в помещениях любого назначения через наружные вертикальные и наклонные (вертикальная проекция) стены, двери и окна, обращенные на:

- север (С), восток (В), северо-восток (С-В) и северо-запад (С-З) - в размере: = 0,1;

- юго-восток (ЮВ), запад (З) - в размере: = 0,05;

- юг (Ю), юго-запад (ЮЗ) – = 0.

13.Добавочные потери теплоты на нагревание холодного воздуха, поступающего при кратковременном открывании наружных входов, не оборудованных воздушно-тепловыми завесами, принимаются в долях от основных потерь через наружные двери в зависимости от типа входных дверей и высоты здания H, м.

Для двойных дверей с тамбурами между ними:

, (2.12)

где =0,27Н – значение коэффициента добавочных теплопотерь, учитывающего тип дверей и высоту здания.

В жилых зданиях теплопотери следует учитывать только для дверей лестничных клеток, Вт.

Коэффициенты добавочных теплопотерь для ограждений записываются в графы 12, 13.

14. Результаты расчетов добавочных теплопотерь для каждого помещения,Qд=Qоснх β, Вт, записываются в графу 14.

15. Суммарные теплопотери с учетом добавочных, Вт, Qоб, записываются в графу 15(итоговая строка для каждого помещения).

16. Добавочные потери теплоты на нагревание инфильтрующегося наружного воздуха. В жилых и общественных зданиях инфильтрация происходит, главным образом, через окна, балконные двери, световые фонари, наружные двери, ворота, открытые проемы, щели, стыки стеновых панелей. Инфильтрацию воздуха через отштукатуренные кирпичные и крупнопанельные стены практически можно не учитывать из-за их высокого сопротивления воздухопроницанию.

Добавочные потери теплоты на нагревание инфильтрующегося наружного воздуха и внутренних поверхностей ограждений необходимо определять для двух случаев: при естественной вытяжной вентиляции, не компенсируемой притоком подогретого воздуха Qи.в Вт; при действии теплового и ветрового давления Qи.тв, Вт.

Теплопотери на нагрев инфильтрующегося воздуха Qи в данной курсовой работе не рассчитывают, а принимают в размере 17% от суммарных теплопотерь Qоб.

Расход теплоты на нагревание инфильтрующегося воздуха, Вт, Qи, записываются в графу 16 (итоговая строка для каждого помещения).

17. Дополнительные бытовые теплопоступления в помещения

При расчете тепловой мощности систем отопления необходимо учитывать регулярные бытовые теплопоступления в помещение от электрических приборов, освещения, технологического оборудования, коммуникаций, материалов, тела человека и других источников. При этом значения бытовых тепловыделений, Вт, поступающих в комнаты и кухни жилых домов, следует принимать в количестве 10 Вт на 1м2 площади пола [5] и определять по формуле:

Q6ыт=10·Ап (2.13)

где Ап - площадь пола отапливаемого помещения, м2.

Бытовые выделения, Qбыт, Вт, записываются в графу 17 (итоговая строка для каждого помещения).

18. В графу 18 (итоговая строка для каждого помещения) заносят полные теплопотери, Qт.п., Вт, для всех ограждений помещения, которые получают суммированием значений, записанных в графах 15, 16 и вычитанием из этой суммы значений графы 17.

Таблица 2.9 - Ведомость расчета теплопотерь и бытовых теплопоступлений

Номер помещения и его назначение

Температура внутреннего воздуха tв, °С

Характеристика

ограждения

Расчетная температура наружного воздуха, text, °С

Расчетная разность температур,

tint­text, °С

Коэффициент теплопередачи ограждения k, Вт/(м2 °С)

Коэффициент n

Основные теплопотери,

Qосн=kA(tint­text).n, Вт

Коэффициенты дополнительных теплопотерь, βор

Теплопотери (добвочные), Вт Qд=Qоснх β

Суммарные теплопотери с учетом добавок, Вт , Qоб

Расход теплоты на нагревание инфильтрующегося воздуха, Вт, Qи

Бытовые выделения, Вт, Qбыт=10·Ап

Полные теплопотери, Вт, ∑Qт.п.

Наименование

Ориентация

Размеры a х b, м2

Площадь, А, м2

на ориентацию

на открывание наружных дверей

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

Первый этаж

Второй этаж

Третий этаж

Теплопотери всего здания, Qт.п., Вт

studfiles.net

Расчёт тепловой мощности отопительных систем

Оглавление: [скрыть]

  • Биметаллические радиаторы
  • Алюминиевые радиаторы
  • Стальные радиаторы
  • Расчет мощности батарей отопления по площади
  • Метод расчета по объему

Правильно рассчитанная тепловая мощность радиаторов отопления является залогом того, что система отопления будет максимально эффективной и не потребует дальнейших доработок и усовершенствований. Приведенный ниже расчет отопления основывается на минимальном количестве данных, но имеет небольшую погрешность. Размещение в квартире отопления с завышенными показателями мощности можно дополнить регулировочными дросселями и термостатическими регуляторами, которые сделают процесс управления максимально простым, а комнату — комфортной.

Схема размеров стандартного алюминиевого радиатора.

Расчет отопления всецело зависит от используемого прибора. Если речь идет об электрических отопительных приборах, их мощность соответствует паспортным данным. Для различных батарей отопления, конвекторов или фанкойла тепловой расчет производителем осуществляется для разницы температур между помещением и теплоносителем, равной 70°С. Однако российские реалии таковы, что данные показатели относятся к категории недостижимых идеалов.

Биметаллические радиаторы

Биметаллические отопительные радиаторы соединили в себе положительные свойства алюминиевых и стальных конструкций. Из алюминия выполняется практически весь радиатор, благодаря этому материалу можно легко создать любые формы, он прекрасно выполняет роль декоративного элемента. Стальной составляющей радиатора является сердцевина, на которую возлагается ответственность за подачу горячей воды и нагревание корпуса.

Расчет биметаллических радиаторов отопления основывается на габаритных размерах секции. Для секции, имеющей межосевое расстояние подводок в 500 миллиметров, теплоотдача составляет 165 ватт, 400 мм — 143 ватта, 300 мм — 120 ватт и 250 мм — 102 ватта. Несложным математическим подсчетом определим, что 10 секций с полуметром между осями способны производить 1650 ватт тепла.

Вернуться к оглавлению

Отопительные системы, выполненные из алюминия, имеют высокую теплоотдачу.

Данный тип конструкций на 50% состоит из излучаемой и на 50% из конвекционной энергии. Благодаря таким показателям алюминиевые конструкции являются одними из наиболее эффективных источников тепла в помещении.

Схема биметаллического радиатора.

Не последнее место в этом играют конструктивные особенности, наличие ребер позволяет увеличивать площади теплосъема до 0,5 м².

Термоголовки предоставляют возможность регулировать нагрев воды в элементе системы, изменяя и теплоотдачу алюминиевых радиаторов. Вследствие небольшой тепловой инверсии любые изменения в работе термоклапана ощущаются через несколько минут, что позволяет сэкономить тепло на 30%. Стоит отметить, что алюминий обладает высокой теплопроводностью. Все эти показатели делают теплоотдачу у таких радиаторов максимальной.

В сравнении с чугунными радиаторами, алюминиевые на 12% опережают их по теплоотдаче. Подбирая необходимое количество секций, мощность определяется из расчета 100 Вт на 1 м² площади помещения, однако формула точного расчета включает ряд иных переменных.

Q=(22+0,54Dt)(Sp+Sns+2So), где

  1. So — площадь проемов окон.
  2. Sns — площадь наружных стен, м².
  3. Sp — площадь помещения, м².
  4. Dt — разница температур, в градусах.
  5. Q — необходимая мощность, Вт.

Вернуться к оглавлению

Выбирая стальные радиаторы, можно следовать простому принципу, который основывается на количестве наружных стен и площади помещения. Если в комнате находится одна наружная стена и одно окно, то для отопления 10 м² будет достаточно 1 кВт мощности. При наличии двух наружных окон и одного окна требуемая для отопления 10 м² мощность увеличивается до 1,2 кВт. Для получения достаточного уровня отопления комнаты с двумя наружными стенами и двумя окнами потребуется 1,3 кВт тепловой мощности на каждые 10 м² площади. Провести расчет мощности стальных батарей можно с использованием формулы на основе площади и объема.

http://youtu.be/RqBdKdukRfY

Вернуться к оглавлению

Схема подключения алюминиевых радиаторов.

В основе расчета по площади лежат санитарные нормы и правила, которые указывают на то, что на каждые 10 м² площади должно приходиться 100 ватт тепловой мощности. Применяемый при расчете тепловой коэффициент будет отличаться в зависимости от климатических особенностей местности. Так, для южных районов России он равен 0,7-0,9, для Якутии и Чукотки — 2,0, для Дальнего Востока — 1,6.

Подобный подход к получению необходимой мощности радиаторов имеет погрешности, определяемые рядом факторов, таких как наличие панорамного остекления, расположение квартиры внутри дома и высота потолков.

Пример: площадь комнаты в 12 м² умножаем на 100 Вт и коэффициент района 0,7. Полученный результат — 840 ватт. Исходя из мощности одной секции 180 ватт, потребуется 840/180=4,66 секции, что при округлении дает пять. При расчете тепловой мощности и количества батарей специалисты рекомендуют делать 30% запас.

Вернуться к оглавлению

Данный метод расчета мощности радиаторов является более точным, поскольку учитывает высоту потолков. Приведем пример расчета для квартиры, расположенной в «сталинке» (данное уточнение имеет значение при определении высоты потолка, которая равна 3,1 м). Объем помещения — 3х4х3,1=37,2 м³. На 1 м³ объема требуется 40 ватт мощности отопительной системы, соответственно, для такой комнаты мощность радиаторов должна быть 37,2х40=1488 ватта. С учетом районного коэффициента — 0,7: 1488х0,7=1041 ватт, что составляет шесть секций стальных радиаторов.

http://youtu.be/OUIpn5iKI6c

Выполнение уточненного расчета осуществляется на основе большего числа параметров:

  1. Количество окон и дверей. Усредненные потери тепла через стандартное окно составляют 100 Вт, через дверь — 200 Вт.
  2. Расположение комнаты на углу дома или в торце делает обязательным использование коэффициента 1,1-1,3 в зависимости от толщины стен здания и материала.
  3. Для частного домостроения используется коэффициент 1,5, поскольку потери тепла через крышу и пол значительно выше.
  4. Базовое значение — 40 ватт на 1 м³ и региональные коэффициенты, те же, что и при расчете по площади комнаты.

Пример расчета мощности и количества радиаторов для комнаты в 12 м², находящейся на углу частного дома, при наличии двери на улицу и окна и средней температуре января -54°С.

  1. Базовая мощность с учетом объема помещения составит 1488 ватт.
  2. Наличие двери и окна прибавит 300 ватт — 1488+300=1788.
  3. В связи с тем что речь идет о частном доме с вероятными утечками тепла через крышу — 1788х1,5=2682.
  4. Расположение на углу дома предполагает использование коэффициента 1,3. 2682х1,3=3486,6 ватта.

http://youtu.be/Yw7vcKKuF0k

Вышеприведенные методы расчета помогут максимально точно определить необходимую мощность и количество радиаторов и тем самым добиться комфорта в доме или квартире и экономии.

1poteply.ru

Самостоятельный расчет мощности компонентов системы отопления: циркуляционных насосов, котлов и радиаторов

Проектирование любой системы отопления начинается с расчета ее основных параметров. В первую очередь это касается оптимальной нагрузки на теплоснабжение. Поэтому прежде чем закупать необходимое оборудование следует сделать расчет мощности системы отопления: котлов, радиаторов, насосов, батарей.

Зачем необходим расчет отопления

Определяющей задачей выполнения вычислений является оптимизация дальнейших расходов. Минимальная необходимая мощность котла отопления напрямую отразится на потреблении энергоносителя. Но экономия должна быть в пределах разумного.

Компоненты автономного отопления

Главное предназначение теплоснабжения – поддержание комфортного уровня температуры в жилых помещениях. На это влияет номинальная мощность чугунных радиаторов отопления, тепловые потери здания и параметры котла.

Для корректного подбора оборудования следует правильно рассчитать его параметры. Это можно сделать с помощью специализированных программ или самостоятельно, воспользовавшись определенными формулами.

Кроме этого специалисты рекомендуют рассчитать мощность котла отопления и других компонентов системы для следующего:

  • Планирование затрат на приобретение оборудования. Чем больше номинальная мощность котла или теплоотдача батареи — тем выше их стоимость. В итоге это скажется на бюджете всего мероприятия по обустройству теплоснабжения;
  • Корректное составление графика нагрузки на систему. Правильный расчет мощности насоса для отопления позволит узнать максимальную и минимальную нагрузку на оборудование при изменении внешних факторов – температуры на улице, в комнатах дома;
  • Модернизация системы. Если наблюдаются большие затраты на отопление, их снижение является первоочередной задачей для минимизации обслуживания. Для этого следует выполнить расчет мощности батареи отопления и других компонентов.

Определившись, что без вычисления основных данных нельзя приступать к закупке материала и комплектующих для обустройства теплоснабжения, следует выбрать методик расчетов. Сначала узнаются характеристики каждого компонента в отдельности – котла, насоса радиаторов. Затем их параметры вводятся в программу отопления и еще раз проверяются. По такой же методике делается расчёт отопления теплицы.

На расчет мощности газового котла отопления влияет тип используемого энергоносителя. Следует заранее определиться, какой именно вид газа будет применен – магистральный или сжиженный.

Определение тепловых потерь дома

На первом этапе необходимо правильно рассчитать объем тепла, который будет уходить через наружные стены, окна и двери здания. Работа теплоснабжения должна компенсировать эти потери и на основе полученных данных будут выполнены дальнейший расчет мощности циркуляционного насоса для отопления, котла и батарей.

Определяющим параметром является сопротивление теплопередачи стен и оконных конструкций. Это обратный показатель теплопроводности материалов. Нельзя сделать подбор мощности котла отопления без знания этих величин. Поэтому перед началом расчетов следует узнать толщину стен и материал, из которых они сделаны.

Рекомендуется ознакомиться с содержанием СНиП II-3-79, а также СНиП 23-02-2003. В этих документах указываются нормативные значения сопротивления теплопередачи для различных регионов России. Зная их можно решить вопрос как рассчитать мощность радиатора отопления. Каждый материал обладает определенным значением теплопередачи. Данные о наиболее распространенных для возведения жилых зданий можно взять из стандартных таблиц.

Но этого недостаточно, чтобы в дальнейшем выполнить расчет мощности стальных радиаторов отопления. Дополнительно понадобится узнать толщину каждого типа материалов, используемых для строительства стен. Соотношение этой величины к коэффициенту теплопередачи и будет искомым значением:

R=D/λ

Где R – сопротивление теплопередачи; D – толщина материала; Λ – сопротивление теплопередачи.

В дальнейшем это будет использовано для расчета необходимой мощности котла отопления. Этот этап вычисления является рекомендуемым. Только узнав фактическое сопротивление стен можно определить номинальную мощность всей отопительной системы.

Во время вычисления не учитывается роза ветров, характерная для каждого конкретного региона. Данные о ней влияют на расчет только для многоэтажных зданий.

Особенности расчета мощности различных отопительных котлов

Для правильного подбора мощности котла отопления заранее определяются с его местом установки, типом системы теплоснабжения (открытая, закрытая) и видом используемого топлива. Дополнительно учитывается общая площадь дома и его объем. Эти данные позволят сделать вычисления несколькими способами.

Самый простой метод вычислить номинальную мощность отопительного оборудования – использовать только площадь дома. Для этого берется стандартное соотношение, что для обогрева 10 м² помещения необходимо затратить 1 кВт тепловой энергии. Этот способ будет действовать только для зданий с хорошей теплоизоляцией и стандартной высотой потолков. Его недостатком является большая погрешность. Так, для дома площадью 150 м² по расчету мощность котла отопления потребуется выбрать модель 15 кВт.

Дополнительно применяется поправочный коэффициент, который зависит от месторасположения здания. Тогда окончательная формула для расчета мощности газового котла отопления будет выглядеть следующим образом:

W=(S/10)*K

Где W – номинальная мощность котла; S – площадь дома; K – поправочный коэффициент.

Для центральных областей России К=0,13; для северных широт эго значение варьируется от 0,15 до 0,2. При подборе мощности котла теплоснабжения для южных областей К=0,08.

Точные вычисления можно сделать только после предварительного определения коэффициента теплопередачи стен. Эта методика была описана выше. Для начала находим температурную разницу между нагретым воздухом на улице и в доме – Δt. Затем необходимо определить тепловые потери. Они находятся по формуле:

Р=Δt/R

Где Р – тепловые потери дома; Δt – температурная разница; R – коэффициент сопротивления теплопередачи.

Далее для расчета мощности газового котла теплоснабжения необходимо умножить площадь наружных стен на тепловые потери. В качестве примера возьмем дом площадью стен 127 м², коэффициент сопротивления теплопередачи равен 0,502. Оптимальное значение Δt должно составлять 55. В таком случае тепловые потери на 1 м² будут равны:

Р=55/0,505=108 Вт/м²

Исходя из этого можно рассчитать мощность котла теплоснабжения:

W=127*108=13.7 кВт

В дальнейшем определяется нагрузка на систему отопления при различных значениях Δt. Рекомендуется выбрать модель оборудования с небольшим запасом по мощности – 10-15%. Это позволит расширить теплоснабжение без замены котла и радиаторов.

Для квартир с нормальным утеплением можно взять соотношение 41 Вт тепла на 1 м³ объема помещения в панельном доме и 38 Вт в кирпичном. Если была выполнена теплоизоляция стен – потребуется сделать вышеописанный расчет.

Расчет мощности радиаторов и батарей отопления

Но помимо котла на работу теплоснабжения влияют технические характеристики других компонентов. Поэтому необходимо знать, как рассчитать мощность батареи отопления. Фактически в ней происходит тепловая передача энергии от горячей воды воздуху в помещении.

Виды отопительных радиаторов

Для расчета мощности батарей отопления необходимо фактически определить их теплоотдачу. Так называется сам процесс передачи тепла от нагретого тела воздуху в помещение. Есть несколько факторов, которые влияют на это показатель. Главным из них является материал изготовления. Чем меньше сопротивление теплопередачи у батареи – тем ниже тепловые потери. Однако наряду с этим нужно учитывать эффект аккумулирования энергии. Это наблюдается у чугунных конструкций. Так как для расчета мощность батареи отопления необходимо знать уровень заполнения ее горячей водой – следует вычислить общую площадь конструкции. От этого также зависит суммарная теплоотдача.

Для расчетов необходимо определить Δt по следующей формуле:

Δt=((Тпод-Тобр)/2)-Тпом

Где Тпод, Тобр и Тпом – температуры в подающей, обратной трубе и в помещении.

Для вычисления мощности чугунных радиаторов отопления понадобится коэффициент теплопроводности конкретного материала и общая площадь конструкций. Первое можно взять из стандартных таблиц. Для биметаллических моделей в расчете мощности радиатора отопления учитывается стальные сердечники трубопроводов и алюминиевая нагревательная поверхность.

Вычисление выполняется по следующей формуле:

Q=Δt*k*S

Где Q – удельная теплоемкость радиатора; К – коэффициент теплопроводности; S – общая площадь конструкции.

Таким образом можно рассчитать мощность батареи отопления. Однако на практике это затруднительно, так как остаются неизвестными несколько факторов – фактическая толщина стенки, дополнительные элементы, используемые при изготовлении. Также в расчете мощности батареи теплоснабжения не учитываются тепловые потери в помещении.

Большинство производителей указывает в паспорте радиатора номинальную мощность. Но это делается только для одного теплового режима работы отопления. Поэтому взяв за основу паспортные данные изделия можно точно рассчитать мощность радиатора теплоснабжения.

Фактические показатели теплоотдачи батареи зависят от правильности ее установки. При расчете мощности стальных радиаторов отопления не учитывается их расположение относительно подоконника, пола и стен в комнате.

Вычисление мощности циркуляционного насоса

В закрытых системах теплоснабжения циркуляция жидкости происходит принудительно. До того как рассчитать мощность насоса для отопления необходимо составить схему теплоснабжения. Только после этого можно приступать к вычислениям.

Циркуляционные насосы для отопления

Есть несколько параметров, определяющих основные характеристики этого компонента отопления. Работа насоса направлена на увеличение скорости движения теплоносителя в системе. Помимо этого он не должен создавать избыточные гидравлические нагрузки, повышать шум. Именно поэтому так важно правильно рассчитать мощность насоса для отопления.

Для выполнения вычислений потребуется узнать такие характеристики оборудования:

  • Производительность. Она характеризует количество тепла, переносимого за единицу времени по трубопроводам с помощью циркуляционного насоса;
  • Гидравлическое сопротивление. Это потери давления в магистралях из-за трения воды о внутреннюю поверхность компонентов теплоснабжения. При расчете мощности насоса для отопления этот показатель является одним из определяющих, так как от него зависит скорость потока теплоносителя;
  • Потребляемая мощность. Указывается производителем в паспорте устройства. Определяется характеристиками электродвигателя, подключенного к ротору насоса.

На первом этапе расчета мощности циркуляционного насоса для отопления следует вычислить производительность. Для этого потребуется узнать необходимую тепловую мощность системы теплоснабжения. Расчет производительности выполняются по следующей формуле:

Q=(0.86*R)/(Tпод-Тоб)

Где Q – производительность устройства; R – расчетная тепловая мощность, Вт; Тпод и Тоб – температура воды в подающей и обратной трубе отопления.

Основным фактором, влияющим на производительность насоса, является тепловая мощность системы. Лучше всего вычислить ее максимально точно, чтобы избежать покупки устройства с несоответствующими параметрами. Также на расчет мощности насоса для теплоснабжения влияют характеристики теплоносителя. В случае использования антифризов номинальный показатель необходимо увеличить на 10-15%, так как их плотность значительно выше, чем у дистиллированной воды.

Гидравлическое сопротивление циркуляционного насоса определяется следующей формулой:

Н=1,3*(R1*L1+ R2*L2+… Z1+Z2)/10000

Где R1 и R2 – потеря давления на подающем и обратном участках магистрали; L1 и L2 – протяженность трубопроводов; Z1 и Z2 – гидравлическое сопротивление компонентов системы.

Последний показатель для расчета мощности насоса для теплоснабжения можно взять из паспорта устройства. Если же таковой отсутствует — рекомендуется применять данные из таблицы.

Компонент теплоснабжения

Гидравлическое сопротивление, Па

Котел От 1000 до 2000
Термостатический вентиль От 5000 до 10000
Смеситель От 2000 до 4000
Датчик температуры От 1000 до 1500

Производители указывают гидравлическое сопротивление в величине водяного столба. Т.е. это показатель мощности, которая способна поднять воду в вертикальной трубе на определенный уровень.

Во время расчета мощности циркуляционного насоса для теплоснабжения не учитывается наличие нескольких скоростных режимов. Хотя на практике с помощью этой функции устройства можно оптимизировать скорость движения теплоносителя, тем самым сбалансировав всю систему.

Сложно ли сделать точный расчёт отопления дома или теплицы самостоятельно? Помимо вышеописанных способов рекомендуется применять специализированные программы для теплоснабжения. Это позволит сверить результаты и добиться максимальной точности расчетов.

В видеоматериал показан пример расчета мощности отопления с помощью специализированной программы:

strojdvor.ru

Как рассчитать тепловую мощность радиаторов для системы отопления

До того, как вы узнаете достаточно простой и надежный способ просчета тепловой мощности радиаторов отопления следует напомнить, что тепловая мощность радиатора – это компенсация тепловых потерь помещения.

Итак, в идеале расчет имеет простейший вид: На каждые 10 кв. м. обогреваемой площади необходимо 1 кВт теплоотдачи радиатора отопления. Однако, разные помещения по разному утеплены и имеют разные теплопотери, поэтому как и в случае с подбором мощности твердотопливного котла необходимо использовать коэффициенты.

В том случае, когда дом хорошо утеплен обычно используют коэффициент 1,15. То есть мощность радиаторов отопления должна быть выше идеальных (10 м.кв. — 1 кВт) на  15%.

Если же дом утеплен плохо, то я рекомендую использовать коэффициент 1.30. Это даст небольшой запас мощности и возможность в некоторых случаях использовать низкотемпературный режим отопления.

Тут стоит уточнить: существует три режима систем отопления помещений. Низкотемпературный (температура теплоносителя в радиаторах отопления  45 — 55 градусов), Среднетемпературный (температура теплоносителя в радиаторах отопления  55 — 70 градусов) и Высокотемпературный (температура теплоносителя в радиаторах отопления  70 — 90 градусов).

Все дальнейшие расчеты необходимо осуществлять четко понимая на кокой режим будет рассчитана ваша система отопления. Для регулировки температуры в контурах отопления используются различные методы, сейчас не об этом, но если вам интересно то подробнее можно прочитать тут.

Перейдем к радиаторам. Для корректного расчета тепловой мощности системы отопления нам необходимо несколько параметров указанных в технических паспортах радиаторов. Первый параметр это мощность в киловаттах. Некоторые производители указывают мощность в виде протока теплоносителя в литрах. (для справки 1 л. — 1 кВт). Второй параметр это расчетный перепад температуры — 90/70 или 55/45.  Это значит следующее: Радиатор отопления выдает заявленную производителем мощность при охлаждении в нем теплоносителя с 90 до 70 градусов. Для простоты восприятия скажу, что для того, что бы выбранный радиатор отопления выдавал приблизительно заявленную мощность средняя температура в системе отопления вашего дома должна быть 80 градусов. Если температура теплоносителя будет ниже, то необходимой теплоотдачи не будет.  Однако следует отметить, что маркировка радиатора отопления 90/70 совсем не означает, что он используется только в высокотемпературных системах отопления, его можно использовать в любых, необходимо просто пересчитать ту мощность, которую он выдаст.

Как это сделать: мощность теплоотдачи радиатора отопления рассчитывается по формуле:

Q=K x A x ΔT 

Где

Q — мощность радиатора (Вт)

K — коэффициент теплоотдачи (Вт/м.кв С)

A — площадь теплопередающей поверхности в м. кв.

ΔT — температурный напор (если показатель 90/70 то ΔT  — 80, если 70/50 то ΔT  — 60 и т. д. среднее арифметическое)

Как пользоваться формулой: 

Q — мощность радиатора и ΔT — температурный напор указаны в паспорте радиатора. Имея эти два показателя мы вычисляем оставшиеся неизвестные K и А. Причем, для дальнейших расчетов нужны они будут только в виде единого показателя, рассчитывать теплоотдающую площадь радиатора как и его коэффициент теплоотдачи в отдельности сейчас совершенно не за чем. Далее, имея необходимые составляющие формулы можно легко вычислить мощность радиатора при разных температурных системах отопления.

Пример:

Имеем комнату площадью 20 кв. м., плохо утепленного дома. Рассчитываем на то, что температура теплоносителя будет приблизительно 50 градусов (как в доброй половине квартир наших домов).

Для справки — большинство производителей указывают в техпаспортах радиаторов отопления температурный напор равный (90/70), так что пересчитывать мощность радиаторов приходится часто.

1. 20 кв.м.  — 2 кВт х ( коэффициент 1.3) = 2.6  кВт ( 2600 Вт) Необходимых для обогрева комнаты.

2. Выбираем понравившийся вам внешне радиатор отопления. Данные радиатора Мощность (Q) = 1940 Вт. Температурный напор ΔT (90/70) = 80.

3. Подставляем в формулу:

K x A = 1940 / 80

K x A = 24.25

Имеем: 24.25  х  80 = 1940

4. Подставляем 50 градусов вместо 80

24.25 х 50 = 1212,5

5. И понимаем, что для обогрева площади в 20 кв. м. необходимо чуть больше двух таких радиаторов отопления.

1212,5 Вт. + 1212,5 Вт. = 2425 Вт. при необходимых  2600 Вт.

6. Идем подбирать другие радиаторы.

Поправки на варианты подключения радиаторов.

От метода подключения радиаторов отопления то же завит их теплоотдача. Ниже приведена таблица коэффициентов, которые следует учитывать при проектировании системы отопления. Не лишне будет напомнить, что направление движения теплоносителя в данном случае имеет огромную роль. Особенно это будет полезно тем, кто монтирует систему отопления в доме самостоятельно, профи в этом редко ошибаются.

Справка: Некоторые модели современных радиаторов при том, что внешне имеют нижнее подключение (так называемые «бинокли») на самом деле используют схему подачи теплоносителя сверху вниз посредством  внутренних коммутационных каналов.  

Секционных, наборных радиаторов с таким внутренним перенаправлением потока теплоносителя — не бывает.

Поправки на размещение радиаторов.

От того в каком месте и как размещен радиатор отопления то же зависит его теплоотдача. Как правило радиатор размещают под оконными проемами. В идеале ширина самого радиатора должна соответствовать ширине окна. Делается это для того, что бы создать тепловую завесу перед источником охлаждения и увеличить конвекцию воздуха в помещении. (Радиатор размещенный под окном прогреет комнату намного быстрее, чем если бы он был размещен в любом другом месте.)  

Ниже представлена таблица коэффициентов для внесения поправки в расчеты необходимой тепловой мощности радиаторов отопления.

Пример:

Если к нашему предыдущему примеру (представим себе, что мы подобрали радиаторы отопления под необходимую мощность 2.6 кВт) добавить вводные о том, что подключение к радиаторам было выполнено только снизу, а сами они утоплены под подоконник, то имеем следующие поправки.

2.6 кВт х 0.88 х 1.05 = 2.40 кВт

Вывод: из за нерационального подключения теряем 200 Вт тепловой мощности, а значит необходимо снова возвращаться и искать радиаторы помощнее.

Благодаря этим не хитрым методам вы легко сможете просчитать необходимую тепловую мощность радиаторов в систему отопления вашего дома.

Загрузка...

kotel-td.com


Смотрите также