Пофасадное регулирование систем отопления это


Большая Энциклопедия Нефти и Газа

Cтраница 1

Пофасадное регулирование необходимо при значительном перепаде ( градиенте) температур в помещениях, обращенных на северную и южную стороны, а также находящихся с наветренной и с заветренной стороны.  [1]

Общедомовое и пофасадное регулирование как самостоятельное применяется только для зданий с индивидуальными тепловыми пунктами. При совместном регулировании - групповом с общедомовым и пофасадном достигается максимальная экономия тепловой энергии и обеспечиваются комфортные условия в помещениях за счет полного учета всех факторов, влияющих на тепловой режим в различных помещениях.  [2]

Автоматизированное пофасадное регулирование частей системы отопления сопровождается дальнейшим сокращением теплозатрат ( до 12 %) по сравнению с теплозатратами при обычном центральном качественном регулировании. Об этом свидетельствуют результаты натурных наблюдений. В Москве обследована автоматизированная система водяного отопления 16-этажного жилого здания.  [3]

Допустимо пофасадное регулирование системы.  [4]

При пофасадном регулировании контроль работы частей системы отопления проводят по трем - четырем неблагоприятно расположенным ( обычно подогревающимся) помещениям. Это вызывает перегревание других помещений.  [5]

Этот прибор рекомендуется при пофасадном регулировании для вертикально-однотрубных систем отопления повышенной этажности. Прибор Т-48-4 предназначен для пропорциональной подачи теплоносителя в системах водяного отопления по отклонению от заданной температуры внутреннего воздуха. Прибор Т-48-5 выполняет те же функции, что и прибор Т-48-2, но только с линейной автокоррекцией.  [6]

Самостоятельные автоматические устройства домового регулирования и пофасадного регулирования необходимо применять только на зданиях, не присоединенных к групповым тепловым пунктам.  [7]

Кроме того, в последнее время находят применение системы пофасадного регулирования температуры и расхода воды в системе отопления. Для этого на каждом фасаде здания выбираются три характерные квартиры на верхних этажах здания и три на нижних, в которых устанавливаются термометры сопротивления, подключаемые к специальному регулятору Т-48. К этому же регулятору подключаются термометры сопротивления, установленные в подающем и обратном трубопроводах системы отопления. К выходу регулятора подключаются исполнительные механизмы двух регулирующих клапанов.  [8]

Как видно из сказанного, в жилых домах при наличии пофасадного регулирования системы отопления появляется специальная измерительная сеть, которая должна выполняться медными проводами, что необходимо для обеспечения надежной работы измерительных цепей, по которым проходят ничтожно малые токи. Измерительные цепи прокладываются в металлических трубах для экранирования от наводок.  [9]

Однако при этом увеличиваются число тепловых пунктов и длина транзитных магистралей, затрудняется пофасадное регулирование. От слишком мелкого деления систем отказываются при автоматизации их работы.  [10]

При проектировании водяного отопления предпочтение отдается насосным однотрубным системам из унифицированных узлов и деталей с автоматическим пофасадным регулированием. Гравитационные системы применяют при отсутствии централизованного теплоснабжения, технико-экономическом обосновании их преимущества по сравнению с насосными или при технологической необходимости полного исключения шума и вибрации конструкций в здании.  [11]

Это особенно важно для весеннего периода в зданиях, расположенных в средних и южных районах страны, а также при режиме пофасадного регулирования систем отопления.  [12]

Какие факторы, влияющие на теплопотребность системы водяного отопления здлния, можно будет учесть при переходе от группового в ЦТП к пофасадному регулированию.  [13]

Регуляторы температуры РТК предназначены для автоматического поддержания температуры в отапливаемых помещениях и могут быть использованы на индивидуальных тепловых пунктах как для общего, так и пофасадного регулирования температуры зданий.  [15]

Страницы:      1    2

www.ngpedia.ru

Большая Энциклопедия Нефти и Газа

Cтраница 2

Допустимо пофасадное регулирование системы.  [16]

Из двух видов зонирования более широкое применение, очевидно, получит вертикальное деление систем и, соответственно, пофасадное автоматическое регулирование. Исследования показали [3], что пофасадное регулирование целесообразно для зданий как повышенной, так и средней этажности, особенно расположенных в раскрытых кварталах новой застройки.  [17]

Многофункциональный микропроцессорный регулятор ТЕПЛАР 110 ( ОАО МЗТА) предназначен для автоматизации систем теплоснабжения, горячего водоснабжения, автоматического регулирования температуры в различных установках. Регулятор обеспечивает ПИД-регулиро-вание с воздействием на регулирующие органы объекта по трем каналам; формирование корректирующих воздействий в соответствии с ПИ-алгорит-мом в каскадных АСР по двум каналам; программное изменение задающего воздействия; самонастройку параметров; пофасадное регулирование температуры в зданиях с коррекцией на изменение температуры наружного воздуха и интенсивности солнечной радиации. Установка режима работы, параметров настройки, контроль величин в цифровой форме осуществляются при помощи выносного пульта оператора. Входные сигналы: три сигнала от термопреобразователей сопротивления ( возможно подключение к каждому из каналов до восьми преобразователей, соединенных последовательно), три сигнала от резистивных датчиков положения ЭИМ и три дискретных ( логических) сигнала.  [18]

Допустимо пофасадное регулирование, но вертикальное регулирование практически неосуществимо.  [19]

Давление в системе отопления определяется высотой расположения расширительного сосуда. В этом случае при наличии независимых изолированных гидравлических режимов в тепловой сети и системах отопления обеспечиваются наиболее экономичные перепады давлений и температур. Кроме того, загрязнения из системы отопления не попадают в тепловую сеть. Появляется возможность местного пофасадного регулирования в дополнение к центральному в зависимости от теплоустойчивости здания.  [20]

Прибор Т-48-1 регулирует разность температуры воды в подающем и обратном трубопроводах системы отопления либо только температуры воды в подающем трубопроводе в зависимости от изменения температуры наружного воздуха по заданному графику от предельной задаваемой температуры / ин. При величине i / H обеспечивается поддержание постоянной температуры воды. Прибор Т-48-2 в дополнение к тем функциям, которые выполняет прибор Т-48-1, корректирует принятый температурный график при отклонении от заданной усредненной по нескольким ( до 8) показаниям датчиков температуры внутреннего воздуха в квартирах. Данный регулирующий прибор рекомендуется применять при пофасадном регулировании.  [21]

При проектировании систем отопления многоэтажных жилых домов ( девять этажей и более), состоящих из одинаковых повторяющихся секций, применяют посекционную разводку магистралей с тупиковым движением в них теплоносителя. В рядовых и торцевых секциях создают самостоятельные системы отопления, что обеспечивает унификацию трубных заготовок не только стояков, но и магистралей. Это особенно важно для индустриализации заготовительных работ и упрощает повторное проектирование при массовом блок-секционном строительстве зданий. Однако при этом увеличиваются число тепловых пунктов и длина транзитных магистралей, затрудняется пофасадное регулирование. От слишком мелкого деления систем отказываются при автоматизации их работы.  [22]

Каждой ступени регулирования должны быть определены функции регулирования, которые на данной ступени могут быть достигнуты с наименьшими затратами и минимальным количеством оборудования. Так, наиболее эффективным по окупаемости капитальных вложений является групповой способ регулирования, при котором автоматические устройства, установленные на ЦТП или КРП, обслуживают одновременно 10 - 40 зданий. Конечно, при этом глубина регулирования ( величина сэкономленной теплоты) будет значительно меньше максимально возможной, так как полностью не учитываются все действующие факторы. При групповом способе в полной мере могут быть ликвидированы перетопы, возникающие за счет постоянства температуры сетевой воды в теплый период года, а также частично учтены бытовая теплота и ночное снижение температуры внутреннего воздуха. При дополнении группового регулирования пофасадным глубина регулирования увеличивается ( за счет более полного использования внутренних тепловыделений), появляются новые статьи экономии - за счет солнечной радиации и действия ветра. При этом следует иметь в виду, что при наличии группового регулирования автоматические устройства при пофасадном регулировании будут проще и дешевле.  [23]

Страницы:      1    2

www.ngpedia.ru

Реферат: Пофасадное регулирование теплового режима здания, тепловые завесы

В холодный период года в результате разницы внутренней и наружной температур происходит передача теплоты из здания в окружающую среду. Передача теплоты осуществляется, с одной стороны, теплопередачей строительных конструкций, с другой стороны — за счет проникания воздуха через швы, стыки, неплотности окон, дверей и строительных конструкций. Эта теплота является потерянной (теплопотери).

Теплопотери здания зависят от:

· его геометрических размеров;

· теплотехнических свойств строительных конструкций;

· температуры внутреннего и наружного воздуха;

· воздухопроницаемости швов, длины открывающихся частей окон и дверей.

В последнее время очень много говорят о несовершенстве принятой системы теплоснабжения с центральными тепловыми пунктами (ЦТП), о больших потерях тепла и воды в разводящих сетях, о низкой эффективности установленного оборудования. Уже возникают «революционные» предложения сломать существующие ЦТП и вместо них в каждом доме построить собственный (индивидуальный) тепловой пункт — ИТП.

Система теплоснабжения с ИТП позволяет более тонко отрегулировать тепловой режим каждого здания, по возможности ввести пофасадное регулирование, дифференцировать давление холодной и горячей воды по разноэтажным зданиям, несколько упростить узлы зачета энергоресурсов, сократить общее количество разводящих трубопроводов. Но так ли велик выигрыш в сокращении расхода энергоресурсов, чтобы затевать коренную и очень дорогостоящую ломку сложившейся системы тепповодоснабжения?

Возьмем, к примеру, тепловой пункт в блочном исполнении (БТП). Это малогабаритный тепловой пункт, укомплектованный современным, в основном отечественным оборудованием, полностью автоматизированный, обеспеченный всеми приборами учета расхода тепла, воды, давления и температуры, подготовленный для передачи технологических и коммерческих параметров в любую диспетчерскую систему, допускающий дистанционное управление работой основного оборудования. Трудозатраты на монтаж и эксплуатацию такого теплового пункта минимальны. Основное оборудование, установленное в БТП — пластинчатые (в основном, современные — паяные) теплообменники, бесфундаментные, при необходимости малошумные, насосы, шаровые краны, высокоточная электронная и гидравлическая автоматика — строго рассчитано и подобрано в соответствии с присоединенной нагрузкой, собственные тепловые потери минимальны. Все ЦТП, как блочные, так и сборные, с независимым присоединением систем отопления, оснащены системой автоматического регулирования отпуска тепла. Температура теплоносителя подается в дома строго в соответствии с температурой наружного воздуха, во избежание гидравлической разрегулировки магистральных тепловых сетей в систему введено ограничение максимального расхода сетевой воды. При необходимости автоматика позволяет ввести программное регулирование (снижение температуры воды в ночные часы или в нерабочие дни). Перерасходы тепла здесь практически отсутствуют. Если заменить существующие системы регулирования индивидуальными, в каждом доме, то дополнительная, очень незначительная, экономия тепла может быть получена только за счет пофасадного регулирования в специальных зданиях с пофасадной (разделенной на север и юг) системой отопления. Одновременно потребуется удвоение средств автоматизации. В ЦТП более ранней постройки с зависимым присоединением систем отопления для ликвидации осенне-весеннего «перетопа» успешно внедряется и эксплуатируется система автоматического регулирования зависимых систем отопления (САРЗСО). Система включает в себя смесительный насос с регулируемым электроприводом, регулятор температуры воды на отопление, регулятор располагаемого напора в систему отопления. В зимнее время система отключена, и ЦТП работает в обычном режиме. В осенне-весенний период, когда температура наружного воздуха находится в пределах от 0 до +12°С, САРЗСО включается, полностью обеспечивая расчетный температурный и гидравлический режимы в системах отопления. Расчетная экономия — 10-13% от годового расхода тепла на отопление — полностью подтверждена экспериментальными работами. Таким образом, замена системы регулирования в ЦТП на 5-10 систем регулирования в ИТП также не даст никакой дополнительной экономии отпуска тепла, но потребует существенных затрат па оборудование, монтаж и эксплуатацию средств авторегулирования, а во многих случаях — и прокладки новых тепловых сетей. Холодное водоснабжение на современных ЦТП обеспечивается моноблочными, в основном отечественными, хозяйственными насосами. Насосы строго подобраны в соответствии с расчетными расходами и напорами, давление воды на выходе из ЦТП регулируется либо частотными преобразователями, либо высокоточными отечественными регуляторами давления. Обычно используются блочные насосные станции, состоящие из двух насосов и щита управления с одним частотным преобразователем. Это и энергоэффективно, и малозатратно при внедрении и эксплуатации. Срок окупаемости за счет экономии электроэнергии и воды составляет 1-2 года. Замена одной насосной станции в ЦТП на 5-10 станций в ИТП за счет учета разноэтажных зданий, очевидно, даст некоторую экономию расхода воды (но не электроэнергии), а капитальные и, особенно, эксплуатационные затраты очень велики, потребуется применение малошумных насосов, перекладка разводящих сетей холодного водоснабжения (к расходу холодной воды добавляется расход горячей воды), обслуживание насосов и частотных преобразователей. Проще эту экономию получить за счет установки регуляторов давления в малоэтажных зданиях. Наиболее уязвимым местом в системах тепловодоснабжения с центральными тепловыми пунктами является коррозия разводящих сетей отопления и горячего водоснабжения. Но в последние годы в Москве налажено производство неподверженных коррозии гибких предизолированных тепловодопроводов «Изопрофлекс» из сшитого полиэтилена. Они рассчитаны на рабочую температуру до 95°С, давление до 10 атм. и срок службы до 50 лет. Этим условиям отвечают разводящие сети от ЦТП с независимым присоединением систем отопления. Уже сейчас проводимая в рамках капитального ремонта замена стальных разводящих сетей на пластиковые полностью снимает проблему их ремонта и обслуживания.

Исходя их вышеизложенного, наиболее перспективным направлением дальнейшего развития коммунальной части теплоснабжения г. Москва представляется не многократное увеличение тепловых пунктов за счет сноса существующих ЦТП и устройства на их месте новых ИТП, а дальнейшая модернизация существующих ЦТП с переводом их на независимую схему отопления и устройством новых пластиковых теплопроводов. Расчеты показывают, что переход от циклического капитального ремонта ЦТП (1 раз в 9 лет) к их модернизации не намного увеличивает стоимость работ, и она многократно перекрывается четырехкратным увеличением срока службы тепловых сетей.

Большая экономия тепла достигается от осуществления автоматической коррекции графика подачи тепла на отопление в зависимости от отклонения внутренней температуры воздуха в зданиях от заданной. График регулирования температуры теплоносителя в зависимости от изменения наружной температуры реализуется, если средняя температура внутреннего воздуха, замеренная в контрольных квартирах, не отклоняется от нормальной (заданной), которая составляет 21 °С. В случае отклонения от этой температуры график корректируется. При центральном регулировании это позволяет, помимо поддержания заданной температуры воздуха, получать дополнительную экономию тепла за счет снижения его подачи при отсутствии ветра и частично учитывать теплопоступления с солнечной радиацией.

Поскольку завышение подачи тепла может не отразиться на температуре внутреннего воздуха, необходимо в процессе регулирования в зависимости от температуры наружного воздуха изменять не температуру воды по заданному графику, а непосредственно расход тепла, что позволит избежать ошибок из-за несоответствия фактических и расчетных теплотехнических характеристик системы отопления. Параметры графика расхода тепла определяются расчетом теплопотерь, инфильтрации и внутренних тепловыделений в здании. Этот график, как правило, является линейным, что облегчает его реализацию путем поддержания разности температур теплоносителя в подающем и обратном трубопроводах.

Переход к ИТП позволяет достичь еще большую экономию тепла за счет применения пофасадного автоматического регулирования отопления. Оно особенно эффективно при реконструкции существующих протяженных, многосекционных зданий, выполняемой без замены системы отопления. По эквивалентному эффекту пофасадное регулирование не уступает решению авторегулирования с термостатами, но значительно дешевле по капитальным затратам, и не требует проведения сварочных работ в квартирах, необходимых при установке термостатов.

Для бесчердачных 5–9-этажных жилых домов строительства 50–70 годов XX века осуществление пофасадного авторегулирования наиболее удобно, так как подающая и обратные магистрали проложены в подвале, и поэтому все сварочные работы для прокладки перемычек, объединяющих пофасадные ветки отдельных секций здания, выполняются только в подвале.

Подтверждением эффективности пофасадного авторегулирования может служить практика применения его в жилых зданиях, когда при температуре наружного воздуха – 5–8°С отопление освещенного солнцем фасада автоматически отключалось не только на период попадания солнечных лучей в окна, но и на такое же время после, за счет теплопоступлений от нагретых поверхностей стен и мебели. Важно, чтобы сигналом пофасадного авторегулирования служила температура внутреннего воздуха отапливаемых помещений – интегратор воздействия солнечной радиации, инфильтрации наружного воздуха и внутренних тепловыделений на тепловой режим здания.

Попытка автоматизировать пофасадно разделенные системы отопления без связи с температурой внутреннего воздуха, ограничившись регулированием температуры теплоносителя в зависимости только от температуры наружного воздуха, даже используя датчик, освещаемый солнечными лучами, не только недостаточно эффективна, но и может привести к нарушению теплового режима здания. Во-первых, трудно найти подобие реакции изменения теплоотдачи системы отопления на степень освещения датчика наружной температуры солнечными лучами и, во-вторых, одновременно с освещением фасада солнцем может быть усиление ветра в сторону того же фасада, что приведет к некомпенсируемому снижению температуры воздуха в помещениях, выходящих на этот фасад.

Регулирование только по внутренней температуре также нежелательно, так как это может привести к перерасходу тепла, например, когда в теплый период с появлением солнца из-за повышения внутренней температуры фасадная система отключилась, но температура все еще осталась повышенной, и жильцы дополнительно открывали форточки. После захода солнца температура воздуха понижалась и отопление возобновлялоось, но с увеличенным воздухообменом из-за открытых форточек. Поддержание заданного графика температуры теплоносителя в системе автоматизации с коррекцией по температуре внутреннего воздуха выполняет роль лимитирования подачи тепла.

В новом строительстве следует ориентироваться на оборудование отопительных приборов термостатами, поскольку они повышают комфортные условия, позволяя жильцам удовлетворять свои индивидуальные запросы по поддержанию нужной температуры воздуха. Вертикальные однотрубные или двухтрубные системы отопления с термостатами могут быть дополнены пофасадным авторегулированием для повышения стабильности работы термостатов и расширения пределов регулирования, поскольку при освещении одного из фасадов солнцем будут отключаться не только отопительные приборы, но и стояк. Пофасадное авторегулирование при этом выполняется без коррекции по внутренней температуре, а за счет регулирования температуры теплоносителя, подаваемого в фасадную систему отопления в зависимости от температуры наружного воздуха, измеренной датчиком, расположенным на данном фасаде и открытым для освещения солнечными лучами.

Для измерения потребленного тепла на каждом отопительном приборе с термостатом устанавливается датчик испарительного типа или электронный, по показаниям которых расход тепла, измеренный домовым теплосчетчиком системы отопления, распределяется по каждой квартире. Следует отметить, что индивидуальное измерение количества потребленного тепла при наличии термостата на отопительном приборе должно быть обязательным, ибо оно стимулирует жителей к экономии тепла. Без этого измерения ничего не мешает жильцу увеличить воздухообмен в квартире сверх минимально требуемого по санитарным нормам, и это приведет не к экономии, которой ожидают от установки термостатов, а к перерасходу тепла.

В отличие от пофасадного центрального регулирования при индивидуальном существует опасность, что жильцы одной из соседних квартир могут уехать на некоторое время и с целью экономии установить термостаты на поддержание более низкой температуры воздуха. Расчеты показывают, что если выставлена, например, температура в 10°С, то теплопотери смежных с этой квартирой комнат при средних зимних условиях возрастают на 30–50 %. Это вызовет снижение температуры воздуха в этих комнатах, если отсутствует соответствующий запас поверхности нагрева отопительных приборов, и неоправданное увеличение потребления тепла. Вероятно, для устранения этого недостатка следует, чтобы термостаты имели бы ограничение на снижение задаваемой температуры не ниже 16 °С, поскольку их основная задача поддерживать температуру воздуха в помещении на комфортном (индивидуальном для каждого жильца) уровне, полезно используя теплопоступления с солнечной радиацией, от внутренних тепловыделений, от сокращения инфильтрации наружного воздуха и др.

Что же касается теплового режима для рядового потребителя электроэнергии, то опыт последних лет доказывает, что батареи становятся все холоднее. Все это подталкивает к поиску альтернативных способов согреться. Один из наиболее доступных вариантов — приобретение бытового нагревательного прибора. В настоящее время на рынке представлено достаточно много разнообразных аппаратов бытового назначения. Несмотря на различные принципы устройства, к ним предъявляются примерно одинаковые требования: эффективность, экономичность, комфортность и, по возможности, привлекательный дизайн. Одним их них является тепловая завеса.

Устроена тепловая завеса не сложно. Воздух, разгоняемый мощным вентилятором, проходит через нагревательный элемент, приобретая нужную скорость и температуру (как правило, не более 30-40 градусов Цельсия, чтобы не «ошпарить» человека, входящего с холодной улицы). В качестве нагревательного элемента обычно используется толстая электрическая спираль — тэн. Тэн хорош тем, что не разогревается до больших температур, а тепла дает много. Но иногда на завесах ставят более тонкие и горячие спирали, как на тепловентиляторах. Сложного монтажа электрозавеса не требует, ее просто «втыкают» в розетку, как какой-нибудь кипятильник. Однако мощность тепловой преграды в этом случае ограничена возможностями проводки. У завес другого типа, водяных, вместо электрической спирали используется змеевик, подключаемый к системе центрального отопления. Мощность водяного аппарата может быть очень большой, а эксплуатация обходится в копейки. Есть завесы, которые вообще не имеют нагревательного элемента. Необходимый эффект достигается за счет плотности воздушного потока. Такие завесы, их называют воздушными, потребляют значительно меньше электроэнергии, но годятся только для помещений, где нет дефицита тепла. По типу установки завесы подразделяются на вертикальные и горизонтальные. Первые можно обнаружить на входе в метро, крупные магазины и учреждения, построенные еще при Царе Горохе. В таких системах нагретый воздух подается с боков. Вертикальные завесы импортного производства располагаются по бокам от дверного проема и через расположенный в полу горизонтальный канал подают теплый воздух снизу. Однако наибольшее распространение получили горизонтальные тепловые завесы, которые располагаются над дверным проемом и не занимают полезной площади. К тому же для перекрытия дверного проема они используют теплый воздух, который собирается под потолком, а потому экономят энергию необходимую для его подогрева. При выборе тепловой завесы определяющее значение имеет размер дверного проема. Чем выше дверь, тем большую скорость и интенсивность воздушного потока должна создавать завеса. Для простоты было введено понятие «эффективная высота установки» — это оптимальное расстояние от пола, на котором следует располагать завесу, чтобы она «дула», как надо. Если на высокий проем навесить устройство с небольшой «эффективной высотой», то холодный воздух легко пройдет через нижнюю часть дверного проема. Ничуть не лучше и слишком низкая установка — в этом случае возникают турбулентные потоки, приводящие к перерасходу тепла. Необходимо учитывать и ширину дверного проема. Завеса окажется бесполезной игрушкой, если не будет перекрывать его весь — холодный воздух просто обойдет ее сбоку. Чтобы этого не происходило, в слишком широкие проемы устанавливают по нескольку устройств в ряд. Чтобы понять, какую тепловую мощность должна иметь завеса, приходится руководствоваться сразу несколькими факторами: важно обустройство входа в помещение (с тамбуром или без, двери вертушки и т.д.), количество посетителей, температура в холодное время года. Понятно, здесь лучше полностью довериться мнению специалиста. Если завеса установлена на большой высоте, пульт ДУ не будет лишним. В противном случае придется обзавестись лестницей-стремянкой, которую придется где-то хранить и чуть что таскать к месту установки прибора. Ну а если поток посетителей не слишком велик, стоит приобрести термостат. Оборудованная им завеса включится лишь тогда, если температура в помещении или тамбуре (смотря, где находится завеса) опустится ниже установленного значения.

Список использованных источников

1. Барышев В., Трутаев В. Источник энергии — в ее экономии // Белор. думка. 1997.

2. Герасимов В.В. Основные направления развития энергетики Республики Беларусь // Нестор-вестник-НВ. 1997.

3. Основы энергосбережения: Учеб. пособие / М.В. Самойлов, В.В. Паневчик, А.Н. Ковалев. 2-е изд., стереотип. – Мн.: БГЭУ, 2002. – 198 с.

4. Самойлов М.В., Паневчик В.В., Ковалев А.Н. Основы энергосбережения. Учебное пособие. Мн.: БГЭУ, 2002.

5. Стандартизация энергопотребления — основа энергосбережения / П.П. Безруков, Е.В. Пашков, Ю.А. Церерин, М.Б. Плущевский //Стандарты и качество. 1993.

www.ronl.ru

Дипломная работа: Пофасадное регулирование теплового режима здания, тепловые завесы

В холодный период года в результате разницы внутренней и наружной температур происходит передача теплоты из здания в окружающую среду. Передача теплоты осуществляется, с одной стороны, теплопередачей строительных конструкций, с другой стороны — за счет проникания воздуха через швы, стыки, неплотности окон, дверей и строительных конструкций. Эта теплота является потерянной (теплопотери).

Теплопотери здания зависят от:

· его геометрических размеров;

· теплотехнических свойств строительных конструкций;

· температуры внутреннего и наружного воздуха;

· воздухопроницаемости швов, длины открывающихся частей окон и дверей.

В последнее время очень много говорят о несовершенстве принятой системы теплоснабжения с центральными тепловыми пунктами (ЦТП), о больших потерях тепла и воды в разводящих сетях, о низкой эффективности установленного оборудования. Уже возникают «революционные» предложения сломать существующие ЦТП и вместо них в каждом доме построить собственный (индивидуальный) тепловой пункт — ИТП.

Система теплоснабжения с ИТП позволяет более тонко отрегулировать тепловой режим каждого здания, по возможности ввести пофасадное регулирование, дифференцировать давление холодной и горячей воды по разноэтажным зданиям, несколько упростить узлы зачета энергоресурсов, сократить общее количество разводящих трубопроводов. Но так ли велик выигрыш в сокращении расхода энергоресурсов, чтобы затевать коренную и очень дорогостоящую ломку сложившейся системы тепповодоснабжения?

Возьмем, к примеру, тепловой пункт в блочном исполнении (БТП). Это малогабаритный тепловой пункт, укомплектованный современным, в основном отечественным оборудованием, полностью автоматизированный, обеспеченный всеми приборами учета расхода тепла, воды, давления и температуры, подготовленный для передачи технологических и коммерческих параметров в любую диспетчерскую систему, допускающий дистанционное управление работой основного оборудования. Трудозатраты на монтаж и эксплуатацию такого теплового пункта минимальны. Основное оборудование, установленное в БТП — пластинчатые (в основном, современные — паяные) теплообменники, бесфундаментные, при необходимости малошумные, насосы, шаровые краны, высокоточная электронная и гидравлическая автоматика — строго рассчитано и подобрано в соответствии с присоединенной нагрузкой, собственные тепловые потери минимальны. Все ЦТП, как блочные, так и сборные, с независимым присоединением систем отопления, оснащены системой автоматического регулирования отпуска тепла. Температура теплоносителя подается в дома строго в соответствии с температурой наружного воздуха, во избежание гидравлической разрегулировки магистральных тепловых сетей в систему введено ограничение максимального расхода сетевой воды. При необходимости автоматика позволяет ввести программное регулирование (снижение температуры воды в ночные часы или в нерабочие дни). Перерасходы тепла здесь практически отсутствуют. Если заменить существующие системы регулирования индивидуальными, в каждом доме, то дополнительная, очень незначительная, экономия тепла может быть получена только за счет пофасадного регулирования в специальных зданиях с пофасадной (разделенной на север и юг) системой отопления. Одновременно потребуется удвоение средств автоматизации. В ЦТП более ранней постройки с зависимым присоединением систем отопления для ликвидации осенне-весеннего «перетопа» успешно внедряется и эксплуатируется система автоматического регулирования зависимых систем отопления (САРЗСО). Система включает в себя смесительный насос с регулируемым электроприводом, регулятор температуры воды на отопление, регулятор располагаемого напора в систему отопления. В зимнее время система отключена, и ЦТП работает в обычном режиме. В осенне-весенний период, когда температура наружного воздуха находится в пределах от 0 до +12°С, САРЗСО включается, полностью обеспечивая расчетный температурный и гидравлический режимы в системах отопления. Расчетная экономия — 10-13% от годового расхода тепла на отопление — полностью подтверждена экспериментальными работами. Таким образом, замена системы регулирования в ЦТП на 5-10 систем регулирования в ИТП также не даст никакой дополнительной экономии отпуска тепла, но потребует существенных затрат па оборудование, монтаж и эксплуатацию средств авторегулирования, а во многих случаях — и прокладки новых тепловых сетей. Холодное водоснабжение на современных ЦТП обеспечивается моноблочными, в основном отечественными, хозяйственными насосами. Насосы строго подобраны в соответствии с расчетными расходами и напорами, давление воды на выходе из ЦТП регулируется либо частотными преобразователями, либо высокоточными отечественными регуляторами давления. Обычно используются блочные насосные станции, состоящие из двух насосов и щита управления с одним частотным преобразователем. Это и энергоэффективно, и малозатратно при внедрении и эксплуатации. Срок окупаемости за счет экономии электроэнергии и воды составляет 1-2 года. Замена одной насосной станции в ЦТП на 5-10 станций в ИТП за счет учета разноэтажных зданий, очевидно, даст некоторую экономию расхода воды (но не электроэнергии), а капитальные и, особенно, эксплуатационные затраты очень велики, потребуется применение малошумных насосов, перекладка разводящих сетей холодного водоснабжения (к расходу холодной воды добавляется расход горячей воды), обслуживание насосов и частотных преобразователей. Проще эту экономию получить за счет установки регуляторов давления в малоэтажных зданиях. Наиболее уязвимым местом в системах тепловодоснабжения с центральными тепловыми пунктами является коррозия разводящих сетей отопления и горячего водоснабжения. Но в последние годы в Москве налажено производство неподверженных коррозии гибких предизолированных тепловодопроводов «Изопрофлекс» из сшитого полиэтилена. Они рассчитаны на рабочую температуру до 95°С, давление до 10 атм. и срок службы до 50 лет. Этим условиям отвечают разводящие сети от ЦТП с независимым присоединением систем отопления. Уже сейчас проводимая в рамках капитального ремонта замена стальных разводящих сетей на пластиковые полностью снимает проблему их ремонта и обслуживания.

Исходя их вышеизложенного, наиболее перспективным направлением дальнейшего развития коммунальной части теплоснабжения г. Москва представляется не многократное увеличение тепловых пунктов за счет сноса существующих ЦТП и устройства на их месте новых ИТП, а дальнейшая модернизация существующих ЦТП с переводом их на независимую схему отопления и устройством новых пластиковых теплопроводов. Расчеты показывают, что переход от циклического капитального ремонта ЦТП (1 раз в 9 лет) к их модернизации не намного увеличивает стоимость работ, и она многократно перекрывается четырехкратным увеличением срока службы тепловых сетей.

Большая экономия тепла достигается от осуществления автоматической коррекции графика подачи тепла на отопление в зависимости от отклонения внутренней температуры воздуха в зданиях от заданной. График регулирования температуры теплоносителя в зависимости от изменения наружной температуры реализуется, если средняя температура внутреннего воздуха, замеренная в контрольных квартирах, не отклоняется от нормальной (заданной), которая составляет 21 °С. В случае отклонения от этой температуры график корректируется. При центральном регулировании это позволяет, помимо поддержания заданной температуры воздуха, получать дополнительную экономию тепла за счет снижения его подачи при отсутствии ветра и частично учитывать теплопоступления с солнечной радиацией.

Поскольку завышение подачи тепла может не отразиться на температуре внутреннего воздуха, необходимо в процессе регулирования в зависимости от температуры наружного воздуха изменять не температуру воды по заданному графику, а непосредственно расход тепла, что позволит избежать ошибок из-за несоответствия фактических и расчетных теплотехнических характеристик системы отопления. Параметры графика расхода тепла определяются расчетом теплопотерь, инфильтрации и внутренних тепловыделений в здании. Этот график, как правило, является линейным, что облегчает его реализацию путем поддержания разности температур теплоносителя в подающем и обратном трубопроводах.

Переход к ИТП позволяет достичь еще большую экономию тепла за счет применения пофасадного автоматического регулирования отопления. Оно особенно эффективно при реконструкции существующих протяженных, многосекционных зданий, выполняемой без замены системы отопления. По эквивалентному эффекту пофасадное регулирование не уступает решению авторегулирования с термостатами, но значительно дешевле по капитальным затратам, и не требует проведения сварочных работ в квартирах, необходимых при установке термостатов.

Для бесчердачных 5–9-этажных жилых домов строительства 50–70 годов XX века осуществление пофасадного авторегулирования наиболее удобно, так как подающая и обратные магистрали проложены в подвале, и поэтому все сварочные работы для прокладки перемычек, объединяющих пофасадные ветки отдельных секций здания, выполняются только в подвале.

Подтверждением эффективности пофасадного авторегулирования может служить практика применения его в жилых зданиях, когда при температуре наружного воздуха – 5–8°С отопление освещенного солнцем фасада автоматически отключалось не только на период попадания солнечных лучей в окна, но и на такое же время после, за счет теплопоступлений от нагретых поверхностей стен и мебели. Важно, чтобы сигналом пофасадного авторегулирования служила температура внутреннего воздуха отапливаемых помещений – интегратор воздействия солнечной радиации, инфильтрации наружного воздуха и внутренних тепловыделений на тепловой режим здания.

Попытка автоматизировать пофасадно разделенные системы отопления без связи с температурой внутреннего воздуха, ограничившись регулированием температуры теплоносителя в зависимости только от температуры наружного воздуха, даже используя датчик, освещаемый солнечными лучами, не только недостаточно эффективна, но и может привести к нарушению теплового режима здания. Во-первых, трудно найти подобие реакции изменения теплоотдачи системы отопления на степень освещения датчика наружной температуры солнечными лучами и, во-вторых, одновременно с освещением фасада солнцем может быть усиление ветра в сторону того же фасада, что приведет к некомпенсируемому снижению температуры воздуха в помещениях, выходящих на этот фасад.

Регулирование только по внутренней температуре также нежелательно, так как это может привести к перерасходу тепла, например, когда в теплый период с появлением солнца из-за повышения внутренней температуры фасадная система отключилась, но температура все еще осталась повышенной, и жильцы дополнительно открывали форточки. После захода солнца температура воздуха понижалась и отопление возобновлялоось, но с увеличенным воздухообменом из-за открытых форточек. Поддержание заданного графика температуры теплоносителя в системе автоматизации с коррекцией по температуре внутреннего воздуха выполняет роль лимитирования подачи тепла.

В новом строительстве следует ориентироваться на оборудование отопительных приборов термостатами, поскольку они повышают комфортные условия, позволяя жильцам удовлетворять свои индивидуальные запросы по поддержанию нужной температуры воздуха. Вертикальные однотрубные или двухтрубные системы отопления с термостатами могут быть дополнены пофасадным авторегулированием для повышения стабильности работы термостатов и расширения пределов регулирования, поскольку при освещении одного из фасадов солнцем будут отключаться не только отопительные приборы, но и стояк. Пофасадное авторегулирование при этом выполняется без коррекции по внутренней температуре, а за счет регулирования температуры теплоносителя, подаваемого в фасадную систему отопления в зависимости от температуры наружного воздуха, измеренной датчиком, расположенным на данном фасаде и открытым для освещения солнечными лучами.

Для измерения потребленного тепла на каждом отопительном приборе с термостатом устанавливается датчик испарительного типа или электронный, по показаниям которых расход тепла, измеренный домовым теплосчетчиком системы отопления, распределяется по каждой квартире. Следует отметить, что индивидуальное измерение количества потребленного тепла при наличии термостата на отопительном приборе должно быть обязательным, ибо оно стимулирует жителей к экономии тепла. Без этого измерения ничего не мешает жильцу увеличить воздухообмен в квартире сверх минимально требуемого по санитарным нормам, и это приведет не к экономии, которой ожидают от установки термостатов, а к перерасходу тепла.

В отличие от пофасадного центрального регулирования при индивидуальном существует опасность, что жильцы одной из соседних квартир могут уехать на некоторое время и с целью экономии установить термостаты на поддержание более низкой температуры воздуха. Расчеты показывают, что если выставлена, например, температура в 10°С, то теплопотери смежных с этой квартирой комнат при средних зимних условиях возрастают на 30–50 %. Это вызовет снижение температуры воздуха в этих комнатах, если отсутствует соответствующий запас поверхности нагрева отопительных приборов, и неоправданное увеличение потребления тепла. Вероятно, для устранения этого недостатка следует, чтобы термостаты имели бы ограничение на снижение задаваемой температуры не ниже 16 °С, поскольку их основная задача поддерживать температуру воздуха в помещении на комфортном (индивидуальном для каждого жильца) уровне, полезно используя теплопоступления с солнечной радиацией, от внутренних тепловыделений, от сокращения инфильтрации наружного воздуха и др.

Что же касается теплового режима для рядового потребителя электроэнергии, то опыт последних лет доказывает, что батареи становятся все холоднее. Все это подталкивает к поиску альтернативных способов согреться. Один из наиболее доступных вариантов — приобретение бытового нагревательного прибора. В настоящее время на рынке представлено достаточно много разнообразных аппаратов бытового назначения. Несмотря на различные принципы устройства, к ним предъявляются примерно одинаковые требования: эффективность, экономичность, комфортность и, по возможности, привлекательный дизайн. Одним их них является тепловая завеса.

Устроена тепловая завеса не сложно. Воздух, разгоняемый мощным вентилятором, проходит через нагревательный элемент, приобретая нужную скорость и температуру (как правило, не более 30-40 градусов Цельсия, чтобы не «ошпарить» человека, входящего с холодной улицы). В качестве нагревательного элемента обычно используется толстая электрическая спираль — тэн. Тэн хорош тем, что не разогревается до больших температур, а тепла дает много. Но иногда на завесах ставят более тонкие и горячие спирали, как на тепловентиляторах. Сложного монтажа электрозавеса не требует, ее просто «втыкают» в розетку, как какой-нибудь кипятильник. Однако мощность тепловой преграды в этом случае ограничена возможностями проводки. У завес другого типа, водяных, вместо электрической спирали используется змеевик, подключаемый к системе центрального отопления. Мощность водяного аппарата может быть очень большой, а эксплуатация обходится в копейки. Есть завесы, которые вообще не имеют нагревательного элемента. Необходимый эффект достигается за счет плотности воздушного потока. Такие завесы, их называют воздушными, потребляют значительно меньше электроэнергии, но годятся только для помещений, где нет дефицита тепла. По типу установки завесы подразделяются на вертикальные и горизонтальные. Первые можно обнаружить на входе в метро, крупные магазины и учреждения, построенные еще при Царе Горохе. В таких системах нагретый воздух подается с боков. Вертикальные завесы импортного производства располагаются по бокам от дверного проема и через расположенный в полу горизонтальный канал подают теплый воздух снизу. Однако наибольшее распространение получили горизонтальные тепловые завесы, которые располагаются над дверным проемом и не занимают полезной площади. К тому же для перекрытия дверного проема они используют теплый воздух, который собирается под потолком, а потому экономят энергию необходимую для его подогрева. При выборе тепловой завесы определяющее значение имеет размер дверного проема. Чем выше дверь, тем большую скорость и интенсивность воздушного потока должна создавать завеса. Для простоты было введено понятие «эффективная высота установки» — это оптимальное расстояние от пола, на котором следует располагать завесу, чтобы она «дула», как надо. Если на высокий проем навесить устройство с небольшой «эффективной высотой», то холодный воздух легко пройдет через нижнюю часть дверного проема. Ничуть не лучше и слишком низкая установка — в этом случае возникают турбулентные потоки, приводящие к перерасходу тепла. Необходимо учитывать и ширину дверного проема. Завеса окажется бесполезной игрушкой, если не будет перекрывать его весь — холодный воздух просто обойдет ее сбоку. Чтобы этого не происходило, в слишком широкие проемы устанавливают по нескольку устройств в ряд. Чтобы понять, какую тепловую мощность должна иметь завеса, приходится руководствоваться сразу несколькими факторами: важно обустройство входа в помещение (с тамбуром или без, двери вертушки и т.д.), количество посетителей, температура в холодное время года. Понятно, здесь лучше полностью довериться мнению специалиста. Если завеса установлена на большой высоте, пульт ДУ не будет лишним. В противном случае придется обзавестись лестницей-стремянкой, которую придется где-то хранить и чуть что таскать к месту установки прибора. Ну а если поток посетителей не слишком велик, стоит приобрести термостат. Оборудованная им завеса включится лишь тогда, если температура в помещении или тамбуре (смотря, где находится завеса) опустится ниже установленного значения.

Список использованных источников

1. Барышев В., Трутаев В. Источник энергии — в ее экономии // Белор. думка. 1997.

2. Герасимов В.В. Основные направления развития энергетики Республики Беларусь // Нестор-вестник-НВ. 1997.

3. Основы энергосбережения: Учеб. пособие / М.В. Самойлов, В.В. Паневчик, А.Н. Ковалев. 2-е изд., стереотип. – Мн.: БГЭУ, 2002. – 198 с.

4. Самойлов М.В., Паневчик В.В., Ковалев А.Н. Основы энергосбережения. Учебное пособие. Мн.: БГЭУ, 2002.

5. Стандартизация энергопотребления — основа энергосбережения / П.П. Безруков, Е.В. Пашков, Ю.А. Церерин, М.Б. Плущевский //Стандарты и качество. 1993.

www.ronl.ru


Смотрите также